Old Computer Podcasts - Find Shows About Computing's Past

The only online repository for audio about antiquated technology. Here you can find all the best podcasts covering the history of computers, their evolution, and where old technology lives in the modern day.

Recent episodes:

ANTIC Interview 418 - Rick Trow, Computers: Expressway to Tomorrow

    ANTIC The Atari 8-bit Podcast 6/19/2021

Rick Trow, Computers: Expressway to Tomorrow

This is the second interview episode about Computers: Expressway to Tomorrow.

Computers: Expressway to Tomorrow was a school assembly, sponsored by Atari, that played at hundreds of middle schools and high schools throughout the United States in 1983 and 1984. In the previous interview episode, I interviewed one of the show's presenters and the filmmaker. In this episode, my interview with Rick Trow.

Rick Trow was the president of Rick Trow Productions, the company that created the Computers: Expressway to Tomorrow show -- as well as more than 40 other school assemblies and other productions over the years. Mr. Trow wrote the script for the 40-minute show, which combined two synchronized films with a live actor to teach computer basics to young people.

This interview took place on June 5, 2021.

ANTIC Interview 417 - Computers: Expressway to Tomorrow

The Career Game

Rick Trow Productions Employee Newsletters 1983

"Taking the Show on the Road" in Personal Computing September 1983

Atari Brings Multimedia Computer Show To Schools in AtariAge v2n1


Mercury Memories

    Advent of Computing 6/13/2021

This episode we take a look at the earliest days of computing, and one of the earliest forms of computer memory. Mercury delay lines, originally developed in the early 40s for use in radar, are perhaps one of the strangest technologies I've even encountered. Made primarily from liquid mercury and quartz crystals these devices store digital data as a recirculating acoustic wave. They can only be sequentially accessed. Operations are temperature dependent. And, well, the can also be dangerous to human health. So how did mercury find it's way into some of the first computers?

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


The Laws And Court Cases That Shaped The Software Industry

    The History of Computing 6/13/2021

The largest global power during the rise of intellectual property was England, so the world adopted her philosophies. The US had the same impact on software law.

Most case law that shaped the software industry is based on copyright law. Our first real software laws appeared in the 1970s and now have 50 years of jurisprudence to help guide us. This episode looks at the laws, supreme court cases, and some circuit appeals cases that shaped the software industry.

--------

In our previous episode we went through a brief review of how the modern intellectual property laws came to be. Patent laws flowed from inventors in Venice in the 1400s, royals gave privileges to own a monopoly to inventors throughout the rest of Europe over the next couple of centuries, transferred to panels and academies during and after the Age of Revolutions, and slowly matured for each industry as technology progressed. 

Copyright laws formed similarly, although they were a little behind patent laws due to the fact that they weren’t really necessary until we got the printing press. But when it came to data on a device, we had a case in 1908 we covered in the previous episode that led Congress to enact the 1909 Copyright Act. 

Mechanical music boxes evolved into mechanical forms of data storage and computing evolved from mechanical to digital. Following World War II there was an explosion in new technologies, with those in computing funded heavily by US government. Or at least, until we got ourselves tangled up in a very unpopular asymmetrical war in Vietnam. The Mansfield Amendment of 1969, was a small bill in the 1970 Military Authorization Act that ended the US military from funding research that didn’t have a direct relationship to a specific military function. Money could still flow from ARPA into a program like the ARPAnet because we wanted to keep those missiles flying in case of nuclear war. But over time the impact was that a lot of those dollars the military had pumped into computing to help develop the underlying basic sciences behind things like radar and digital computing was about to dry up. This is a turning point: it was time to take the computing industry commercial. And that means lawyers.

And so we got the first laws pertaining to software shortly after the software industry emerged from more and more custom requirements for these mainframes and then minicomputers and the growing collection of computer programmers. The Copyright Act of 1976 was the first major overhaul to the copyright laws since the 1909 Copyright Act. Since then, the US had become a true world power and much as the rest of the world followed the British laws from the Statute of Anne in 1709 as a template for copyright protections, the world looked on as the US developed their laws. Many nations had joined the Berne Convention for international copyright protections, but the publishing industry had exploded. We had magazines, so many newspapers, so many book publishers. And we had this whole weird new thing to deal with: software. 

Congress didn’t explicitly protect software in the Copyright Act of 1976. But did add cards and tape as mediums and Congress knew this was an exploding new thing that would work itself out in the courts if they didn’t step in. And of course executives from the new software industry were asking their representatives to get in front of things rather than have the unpredictable courts adjudicate a weird copyright mess in places where technology meets copy protection. So in section 117, Congress appointed the National Commission on New Technological Uses of Copyrighted Works, or CONTU) to provide a report about software and added a placeholder in the act that empaneled them.

CONTU held hearings. They went beyond just software as there was another newish technology changing the world: photocopying. They presented their findings in 1978 and recommended we define a computer program as a set of statements or instructions to be used directly or indirectly in a computer in order to bring about a certain result. They also recommended that copies be allowed if required to use the program and that those be destroyed when the user no longer has rights to the software. This is important because this is an era where we could write software into memory or start installing compiled code onto a computer and then hand the media used to install it off to someone else. 

At the time the hobbyist industry was just about to evolve into the PC industry, but hard disks were years out for most of those machines. It was all about floppies. But up-market there was all kinds of storage and the righting was on the wall about what was about to come. Install software onto a computer, copy and sell the disk, move on. People would of course do that, but not legally. 

Companies could still sign away their copyright protections as part of a sales agreement but the right to copy was under the creator’s control. But things like End User License Agreements were still far away. Imagine how ludicrous the idea that a piece of software if a piece of software went bad that it could put a company out of business in the 1970s. That would come as we needed to protect liability and not just restrict the right to copy to those who, well, had the right to do so. Further, we hadn’t yet standardized on computer languages. And yet companies were building complicated logic to automate business and needed to be able to adapt works for other computers and so congress looked to provide that right at the direction of CONTU as well, if only to the company doing the customizations and not allowing the software to then be resold. These were all hashed out and put into law in 1980.

And that’s an important moment as suddenly the party who owned a copy was the rightful owner of a piece of software. Many of the provisions read as though we were dealing with book sellers selling a copy of a book, not dealing with the intricate details of the technology, but with technology those can change so quickly and those who make laws aren’t exactly technologists, so that’s to be expected. 

Source code versus compiled code also got tested. In 1982 Williams Electronics v Artic International explored a video game that was in a ROM (which is how games were distributed before disks and cassette tapes. Here, the Third Circuit weighed in on whether if the ROM was built into the machine, if it could be copied as it was utilitarian and therefore not covered under copyright. The source code was protected but what about what amounts to compiled code sitting on the ROM. They of course found that it was indeed protected. 

They again weighed in on Apple v Franklin in 1983. Here, Franklin Computer was cloning Apple computers and claimed it couldn’t clone the computer without copying what was in the ROMs, which at the time was a remedial version of what we think of as an operating system today.  Franklin claimed the OS was in fact a process or method of operation and Apple claimed it was novel. At the time the OS was converted to a binary language at runtime and that object code was a task called AppleSoft but it was still a program and thus still protected. One and two years later respectively, we got Mac OS 1 and Windows 1.

1986 saw Whelan Associates v Jaslow. Here, Elaine Whelan created a management system for a dental lab on the IBM Series One, in EDL. That was a minicomputer and when the personal computer came along she sued Jaslow because he took a BASIC version to market for the PC. He argued it was a different language and the set of commands was therefore different. But the programs looked structurally similar. She won, as while some literal elements were the same, “the copyrights of computer programs can be infringed even absent copying of the literal elements of the program.” This is where it’s simple to identify literal copying of software code when it’s done verbatim but difficult to identify non-literal copyright infringement. 

But this was all professional software. What about those silly video games all the kids wanted? Well, Atari applied for a copyright for one of their games, Breakout. Here, Register of Copyrights, Ralph Oman chose not to Register the copyright. And so Atari sued, winning in the appeal.

There were certainly other dental management packages on the market at the time. But the court found that “copyrights do not protect ideas – only expressions of ideas.” Many found fault with the decision and  the Second Circuit heard Computer Associates v Altai in 1992. Here, the court applied a three-step test of Abstraction-Filtration-Comparison to determine how similar products were and held that Altai's rewritten code did not meet the necessary requirements for copyright infringement.

There were other types of litigation surrounding the emerging digital sphere at the time as well. The Computer Fraud and Abuse Act came along in 1986 and would be amended in 89, 94, 96, and 2001. Here, a number of criminal offenses were defined - not copyright but they have come up to criminalize activities that should have otherwise been copyright cases. And the Copyright Act of 1976 along with the CONTU findings were amended to cover the rental market came to be (much as happened with VHS tapes and Congress established provisions to cover that in 1990. Keep in mind that time sharing was just ending by then but we could rent video games over dial-up and of course VHS rentals were huge at the time.

Here’s a fun one, Atari infringed on Nintendo’s copyright by claiming they were a defendant in a case and applying to the Copyright Office to get a copy of the 10NES program so they could actually infringe on their copyright. They tried to claim they couldn’t infringe because they couldn’t make games unless they reverse engineered the systems. Atari lost that one. But Sega won a similar one soon thereafter because playing more games on a Sega was fair use. Sony tried to sue Connectix in a similar case where you booted the PlayStation console using a BIOS provided by Connectix. And again, that was reverse engineering for the sake of fair use of a PlayStation people payed for. Kinda’ like jailbreaking an iPhone, right? Yup, apps that help jailbreak, like Cydia, are legal on an iPhone. But Apple moves the cheese so much in terms of what’s required to make it work so far that it’s a bigger pain to jailbreak than it’s worth. Much better than suing everyone. 

Laws are created and then refined in the courts. MAI Systems Corp. v. Peak Computer made it to the Ninth Circuit Court of Appeals in 1993. This involved Eric Francis leaving MAI and joining Peak. He then loaded MAI’s diagnostics tools onto computers. MAI thought they should have a license per computer, but yet Peak used the same disk in multiple computers. The crucial change here was that the copy made, while ephemeral, was decided to be a copy of the software and so violated the copyright. We said we’d bring up that EULA though. In 1996, the Seventh Circuit found in ProCD v Zeidenberg, that the license preempted copyright thus allowing companies to use either copyright law or a license when seeking damages and giving lawyers yet another reason to answer any and all questions with “it depends.”

One thing was certain, the digital world was coming fast in those Clinton years. I mean, the White House would have a Gopher page and Yahoo! would be on display at his second inauguration. So in 1998 we got the Digital Millennium Copyright Act (DMCA). Here, Congress added to Section 117 to allow for software copies if the software was required for maintenance of a computer. And yet software was still just a set of statements, like instructions in a book, that led the computer to a given result. The DMCA did have provisions to provide treatment to content providers and e-commerce providers. It also implemented two international treaties and provided remedies for anti-circumvention of copy-prevention systems since by then cracking was becoming a bigger thing. There was more packed in here. We got MAI Systems v Peak Computer reversed by law, refinement to how the Copyright Office works, modernizing audio and movie rights, and provisions to facilitate distance education. And of course the DMCA protected boat hull designs because, you know, might as well cram some stuff into a digital copyright act. 

In addition to the cases we covered earlier, we had Mazer v Stein, Dymow v Bolton, and even Computer Associates v Altai, which cemented the AFC method as the means most courts determine copyright protection as it extends to non-literal components such as dialogue and images. Time and time again, courts have weighed in on what fair use is because the boundaries are constantly shifting, in part due to technology, but also in part due to shifting business models. 

One of those shifting business models was ripping songs and movies. RealDVD got sued by the MPAA for allowing people to rip DVDs. YouTube would later get sued by Viacom but courts found no punitive damages could be awarded. Still, many online portals started to scan for and filter out works they could know were copy protected, especially given the rise of machine learning to aid in the process. But those were big, major companies at the time. IO Group, Inc sued Veoh for uploaded video content and the judge found Veoh was protected by safe harbor. 

Safe Harbor mostly refers to the Online Copyright Infringement Liability Limitation Act, or OCILLA for short, which shields online portals and internet service providers from copyright infringement. This would be separate from Section 230, which protects those same organizations from being sued for 3rd party content uploaded on their sites. That’s the law Trump wanted overturned during his final year in office but given that the EU has Directive 2000/31/EC, Australia has the Defamation Act of 2005, Italy has the Electronic Commerce Directive 2000, and lots of other countries like England and Germany have had courts find similarly, it is now part of being an Internet company. Although the future of “big tech” cases (and the damage many claim is being done to democracy) may find it refined or limited.

In 2016, Cisco sued Arista for allegedly copying the command line interfaces to manage switches. Cisco lost but had claimed more than $300 million in damages. Here, the existing Cisco command structure allowed Arista to recruit seasoned Cisco administrators to the cause. Cisco had done the mental modeling to evolve those commands for decades and it seemed like those commands would have been their intellectual property. But, Arista hadn’t copied the code. 

Then in 2017, in ZeniMax vs Oculus, ZeniMax wan a half billion dollar case against Oculus for copying their software architecture. 

And we continue to struggle with what copyright means as far as code goes. Just in 2021, the Supreme Court ruled in Google v Oracle America that using application programming interfaces (APIs) including representative source code can be transformative and fall within fair use, though did not rule if such APIs are copyrightable. I’m sure the CP/M team, who once practically owned the operating system market would have something to say about that after Microsoft swooped in with and recreated much of the work they had done. But that’s for another episode.

And traditional media cases continue. ABS Entertainment vs CBS looked at whether digitally remastering works extended copyright. BMG vs Cox Communications challenged peer-to-peer file-sharing in safe harbor cases (not to mention the whole Napster testifying before congress thing). You certainly can’t resell mp3 files the way you could drop off a few dozen CDs at Tower Records, right? Capitol Records vs ReDigi said nope. Perfect 10 v Amazon, Goldman v Breitbart, and so many more cases continued to narrow down who and how audio, images, text, and other works could have the right to copy restricted by creators. But sometimes it’s confusing. Dr. Seuss vs ComicMix found that merging Star Trek and “Oh, the Places You’ll Go” was enough transformativeness to break the copyright of Dr Seuss, or was that the Fair Use Doctrine? Sometimes I find conflicting lines in opinions. Speaking of conflict…

Is the government immune from copyright? Allen v Cooper, Governor of North Carolina made it to the Supreme Court, where they applied blanket copyright protections. Now, this was a shipwreck case but extended to digital works and the Supreme Court seemed to begrudgingly find for the state, and looked to a law as remedy rather than awarding damages. In other words, the “digital Blackbeards” of a state could pirate software at will. Guess I won’t be writing any software for the state of North Carolina any time soon!

But what about content created by a state? Well, the state of Georgia makes various works available behind a paywall. That paywall might be run by a third party in exchange for a cut of the proceeds. So Public.Resource goes after anything where the edict of a government isn’t public domain. In other words, court decision, laws, and statutes should be free to all who wish to access them. The “government edicts doctrine” won in the end and so access to the laws of the nation continue to be free.

What about algorithms? That’s more patent territory when they are actually copyrightable, which is rare. Gottschalk v. Benson was denied a patent for a new way to convert binary-coded decimals to numerals while Diamond v Diehr saw an algorithm to run a rubber molding machine was patentable. And companies like Intel and Broadcom hold thousands of patents for microcode for chips.

What about the emergence of open source software and the laws surrounding social coding? We’ll get to the emergence of open source and the consequences in future episodes!

One final note, most have never heard of the names in early cases. Most have heard of the organizations listed in later cases. Settling issues in the courts has gotten really, really expensive. And it doesn’t always go the way we want. So these days, whether it’s Apple v Samsung or other tech giants, the law seems to be reserved for those who can pay for it. Sure, there’s the Erin Brockovich cases of the world. And lady justice is still blind. We can still represent ourselves, case and notes are free. But money can win cases by having attorneys with deep knowledge (which doesn’t come cheap). And these cases drag on for years and given the startup assembly line often halts with pending legal actions, not many can withstand the latency incurred. This isn’t a “big tech is evil” comment as much as “I see it and don’t know a better rubric but it’s still a thing” kinda’ comment.

Here’s something better that we’d love to have a listener take away from this episode. Technology is always changing. Laws usually lag behind technology change as (like us) they’re reactive to innovation. When those changes come, there is opportunity. Not only has the technological advancement gotten substantial enough to warrant lawmaker time, but the changes often create new gaps in markets that new entrants can leverage. Either leaders in markets adapt quickly or see those upstarts swoop in, having no technical debt and being able to pivot faster than those who previously might have enjoyed a first user advantage. What laws are out there being hashed out, just waiting to disrupt some part of the software market today?


We love the Mac!

    RetroMacCast 6/13/2021

James and Derek from Mac Folklore Radio discuss eBay Finds: Mac global sales training card, Twentieth Anniversary Macintosh, and Apple apron. We get an update on MFR, and news includes the upcoming WWDC, an important Jobs email, a Mac tattoo, and NanoRaptor creations.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Journey: The Quest Begins

    Eaten By A Grue: Infocom, Text Adventures, and Interactive Fiction 6/12/2021

Kay and Carrington take a midnight train going anywhere into a land of magic, but too few resources to play it any way they want it (that's the way they need it). Will the Grue Crew and this game go their separate ways, or will they embrace this capital-J Journey with open arms?


Origins of the Modern Patent And Copyright Systems

    The History of Computing 6/7/2021

Once upon a time, the right to copy text wasn’t really necessary. If one had a book, one could copy the contents of the book by hiring scribes to labor away at the process and books were expensive. Then came the printing press. Now, the printer of a work would put a book out and another printer could set their press up to reproduce the same text. More people learned to read and information flowed from the presses at the fastest pace in history. 

The printing press spread from Gutenberg’s workshop in the 1440s throughout Germany and then to the rest of Europe and appearing in England when William Caxton built the first press there in 1476. It was a time of great change, causing England to retreat into protectionism, and Henry VIII tried to restrict what could be printed in the 1500s. But Parliament needed to legislate further. 

England was first to establish copyright when Parliament passed the Licensing of the Press Act in 1662, which regulated what could be printed. This was more to prevent printing scandalous materials and basically gave a monopoly to The Stationers’ Company to register, print, copy, and publish books. They could enter another printer and destroy their presses. That went on for a few decades until the act was allowed to lapse in 1694 but began the 350 year journey of refining what copyright and censorship means to a modern society. 

The next big step came in England when the Statute of Anne was passed in 1710. It was named for the reigning last Queen of the House of Stuart. While previously a publisher could appeal to have a work censored by others because the publisher had created it, this statute took a page out of the patent laws and granted a right of protection against copying a work for 14 years. Reading through the law and further amendments it is clear that lawmakers were thinking far more deeply about the balance between protecting the license holder of a work and how to get more books to more people. They’d clearly become less protectionist and more concerned about a literate society. 

There are examples in history of granting exclusive rights to an invention from the Greeks to the Romans to Papal Bulls. These granted land titles, various rights, or a status to people. Edward the Confessor started the process of establishing the Close Rolls in England in the 1050s, where a central copy of all those granted was kept. But they could also be used to grant a monopoly, with the first that’s been found being granted by Edward III to John Kempe of Flanders as a means of helping the cloth industry in England to flourish. 

Still, this wasn’t exactly an exclusive right but instead a right to emigrate. And the letters were personal and so letters patent evolved to royal grants, which Queen Elizabeth was providing in the late 1500s. That emerged out of the need for patent laws proven by Venicians in the late 1400s, when they started granting exclusive rights by law to inventions for 10 years. King Henry II of France established a royal patent system in France and over time the French Academy of Sciences was put in charge of patent right review.

English law evolved and perpetual patents granted by monarchs were stifling progress. Monarchs might grant patents to raise money and so allow a specific industry to turn into a monopoly to raise funds for the royal family. James I was forced to revoke the previous patents, but a system was needed. And so the patent system was more formalized and those for inventions got limited to 14 years when the Statue of Monopolies was passed in England in 1624. The evolution over the next few decades is when we started seeing drawings added to patent requests and sometimes even required. We saw forks in industries and so the addition of medical patents, and an explosion in various types of patents requested. 

They weren’t just in England. The mid-1600s saw the British Colonies issuing their own patents. Patent law was evolving outside of England as well. The French system was becoming larger with more discoveries. By 1729 there were digests of patents being printed in Paris and we still keep open listings of them so they’re easily proven in court. Given the maturation of the Age of Enlightenment, that clashed with the financial protectionism of patent laws and intellectual property as a concept emerged but borrowed from the patent institutions bringing us right back to the Statute of Anne, which established the modern Copyright system. That and the Statue of Monopolies is where the British Empire established the modern copyright and patent systems respectively, which we use globally today. Apparently they were worth keeping throughout the Age of Revolution, mostly probably because they’d long been removed from the monarchal control and handed to various public institutions.

The American Revolution came and went. The French Revolution came and went. The Latin American wars of independence, revolutions throughout the 1820s , the end of Feudalism, Napoleon. But the wars settled down and a world order of sorts came during the late 1800s. One aspect of that world order was the Berne Convention, which was signed in 1886. This  established the bilateral recognition of copyrights among sovereign nations that signed onto the treaty, rather than have various nations enter into pacts between one another. Now, the right to copy works were automatically in force at creation, so authors no longer had to register their mark in Berne Convention countries.

Following the Age of Revolutions, there was also an explosion of inventions around the world. Some ended up putting copyrighted materials onto reproducible forms. Early data storage. Previously we could copyright sheet music but the introduction of the player piano led to the need to determine the copyright ability of piano rolls in White-Smith Music v. Apollo in 1908. Here we saw the US Supreme Court find that these were not copies as interpreted in the US Copyright Act because only a machine could read them and they basically told congress to change the law. So Congress did.

The Copyright Act of 1909 then specified that even if only a machine can use information that’s protected by copyright, the copyright protection remains. And so things sat for a hot minute as we learned first mechanical computing, which is patentable under the old rules and then electronic computing which was also patentable. Jacquard patented his punch cards in 1801. But by the time Babbage and Lovelace used them in his engines that patent had expired. And the first digital computer to get a patent was the Eckert-Mauchly ENIAC, which was filed in 1947, granted in 1964, and because there was a prior unpatented work, overturned in 1973. Dynamic RAM was patented in 1968. But these were for physical inventions.

Software took a little longer to become a legitimate legal quandary. The time it took to reproduce punch cards and the lack of really mass produced software didn’t become an issue until after the advent of transistorized computers with Whirlwind, the DEC PDP, and the IBM S/360.

Inventions didn’t need a lot of protections when they were complicated and it took years to build one. I doubt the inventor of the Antikythera Device in Ancient Greece thought to protect their intellectual property because they’d of likely been delighted if anyone else in the world would have thought to or been capable of creating what they created. Over time, the capabilities of others rises and our intellectual property becomes more valuable because progress moves faster with each generation. Those Venetians saw how technology and automation was changing the world and allowed the protection of inventions to provide a financial incentive to invent. Licensing the commercialization of inventions then allows us to begin the slow process of putting ideas on a commercialization assembly line. 

Books didn’t need copyright until they could be mass produced and were commercially viable. That came with mass production. A writer writes, or creates intellectual property and a publisher prints and distributes. Thus we put the commercialization of literature and thoughts and ideas on an assembly line. And we began doing so far before the Industrial Revolution. 

Once there were more inventions and some became capable of mass producing the registered intellectual property of others, we saw a clash in copyrights and patents. And so we got the Copyright Act of 1909. But with digital computers we suddenly had software emerging as an entire industry. IBM had customized software for customers for decades but computer languages like FORTRAN and mass storage devices that could be moved between computers allowed software to be moved between computers and sometimes entire segments of business logic moved between companies based on that software. By the 1960s, companies were marketing computer programs as a cottage industry. 

The first computer program was deposited at the US Copyright Office in 1961. It was a simple thing. A tape with a computer program that had been filed by North American Aviation. Imagine the examiners looking at it with their heads cocked to the side a bit. “What do we do with this?” They hadn’t even figured it out when they got three more from General Dynamics and two more programs showed up from a student at Columbia Law. 

A punched tape held a bunch of punched cards. A magnetic tape just held more punched tape that went faster. This was pretty much what those piano rolls from the 1909 law had on them. Registration was added for all five in 1964. And thus software copyright was born. But of course it wasn’t just a metallic roll that had impressions for when a player piano struck a hammer. If someone found a roll on the ground, they could put it into another piano and hit play. But the likelihood that they could put reproduce the piano roll was low. The ability to reproduce punch cards had been there. But while it likely didn’t take the same amount of time it took to reproduce a copy Plato’s Republic before the advent of the printing press, the occurrences weren’t frequent enough to encounter a likely need for adjudication. That changed with high speed punch devices and then the ability to copy magnetic tape.

Contracts (which we might think of as EULAs today in a way) provided a license for a company to use software, but new questions were starting to form around who was bound to the contract and how protection was extended based on a number of factors. Thus the LA, or License Agreement part of EULA rather than just a contract when buying a piece of software. 

And this brings us to the forming of the modern software legal system. That’s almost a longer story than the written history we have of early intellectual property law, so we’ll pick that up in the next episode of the podcast!


That is not a wombat

    RetroMacCast 6/6/2021

James and John discuss eBay Finds: Inside Macintosh Promo Edition, Mac Colour Classic, and iPhone Sales Training Workbook. Michael Mulhern joins to discuss Internet archiving, and news includes Apple Lossless Audio, Why Mac returns, a new Apple museum.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


The Extremely Elderly Computer Geeks Club

    ANTIC The Atari 8-bit Podcast 5/31/2021

ANTIC Episode 78 -  The Extremely Elderly Computer Geeks Club

In this episode of ANTIC The Atari 8-Bit Computer Podcast… We discuss lots of new things you can do with your FujiNet, the differences in FujiNet versions, the Old Computer Geeks Club, and other recent Atari news...

READY!

Recurring Links 

Floppy Days Podcast 

AtariArchives.org 

AtariMagazines.com 

Kevin’s Book “Terrible Nerd” 

New Atari books scans at archive.org 

ANTIC feedback at AtariAge 

Atari interview discussion thread on AtariAge 

Interview index: here 

ANTIC Facebook Page 

AHCS 

Eaten By a Grue 

Next Without For 

What We’ve Been Up To

News 

Shows

YouTube videos this month

New at Archive.org


- Nothing has changed since... ; Using hexadecimal in ECB ; Review of Thexder

    The CoCo Crew Podcast 5/31/2021

Episode 72 Show Notes -- http://cococrew.org/cococrew-podcast-72.html


Simulated Sumeria

    Advent of Computing 5/30/2021

Where did educational games come from? According to some, the practice of using games in classrooms started in the early 60s with the appearance of the Sumerian Game. However, the story is more complicated than that. This episode we dive into the Sumerian Game, some of the earliest educational games, and the bizarre legacy of a lost piece of software.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


folklore.org: Quick, Hide In This Closet! (1983)

    Mac Folklore Radio 5/30/2021

Steve Jobs temporarily forbid the Macintosh team from working with Sony.

Original text from folklore.org.

Bill Gates Twiggy drive clip from All Things D5, 2007, 3m54s. Alternate source.


ANTIC Interview 417 - Computers: Expressway to Tomorrow

    ANTIC The Atari 8-bit Podcast 5/29/2021

ANTIC Interview 417 - Computers: Expressway to Tomorrow

Interviews and research by Kay Savetz

Imagine this. It's 1983 or 1984. You're drudging through yet another day of middle school or high school. But today, there's a surprise, a break from the monotony. The teacher tells your class to put away their stuff and go to the gym, or the cafeteria, or the auditorium. Today, there will be an assembly.

As you and your class -- and all the other classes -- get settled in the uncomfortable folding chairs, or the bleachers, or even the floor, you take in the scene: two large projection screens. Some speakers and audio equipment you haven't seen before. One of your peers is getting ready to run a spotlight. Then, this enthusiastic person -- older than you but really not by much -- explains why you're here. Today, at this assembly, you're going to learn about computers.

The lights go down, the spotlight comes up on that energetic host, and you realize this is a different sort of school assembly than you've seen before. Two projectors come on, lighting those two big screens -- it's a synchronized wide-screen movie. The presenter -- that not-much-older-than-you person -- talks to the screens, interacting with the movie and talking to the audience too. It's kind of corny, but your peers seem interested so you keep watching.

The show discusses the basics of computer operation, and how computers work differently than the human brain. There's a scene where the computers talk in voices like people. There's a section about robots, and a part where Suzanne Ciani shows how she makes music using computers. It touches on computer art, and the social implications of computers in the world.

40 minutes later, the show is over, and it's back to class. You learned a few things about computers, and talk about the assembly with your friends at lunch. Maybe you'll ask your parents for a computer for your birthday.

This scenario played out more or less exactly that way for more than a million middle school and high school students in 1983 and 1984. The assembly was called "Computers: Expressway to Tomorrow" and it was financed by Atari.

According to a 1983 article in InfoWorld: "Atari has a fleet of ... people traveling around the country giving the Atari multimedia presentation 'Expressway to Tomorrow' to a minimum of 500 people per performance at high-school assemblies."

(Full disclosure, the article claimed "Atari has a fleet of 700 people" putting on the show, but I can't believe that number is accurate. More likely the number was closer to 7.)

The traveling show would visit 2,000 schools in 1983, and was booked a year in advance. With the required minimum attendance of 500 students per show, that's a million kids. More than a million kids saw this assembly. that year.

The September 1983 issue of Personal Computing magazine said: "Since January 1983, nine separate touring units have crisscrossed the United States, presenting the show to nearly 1,400 public and private schools — a total of 1.2 million students to date. Touring begins again this September after the summer break, and will run through December 1984." In reality, I believe the show ended by mid-1984.

According to that article: "The show is a lively one, with the host on stage for the entire presentation. Several film projectors are going at once, filling two huge screens with fast-moving shots. Music is constant throughout. The host is busy either talking to the audience or interacting with characters on screen.  ...The program aims to give people [a] feeling of comfort about computing. The show focuses on the many applications of computers today, from storing recipes to teaching a language, to tutoring."

What survives of this show today? Not much that I know about so far. We don't have the film or the script. Audio tapes were available to help the presenters learn their lines. Informational packets were produced for teachers to hand out after the assembly. So far, I haven't been able to find anyone who has any of those things. (If you do, contact me!) What I do have is two interviews: memories of that project by one of the performers who went from school to school running the assembly, and the filmmaker.

Before we get to the interviews, I want to give some background about the business of producing school assemblies. It turns out that school assemblies are a big business. Computers: Expressway to Tomorrow was one of many shows put on by Rick Trow Productions of Willow Grove, Pennsylvania. These shows were often sponsored by corporations, designed to educate kids, but also to get them excited about whatever it was they wanted to promote: taking pictures with Kodak cameras. Going skiing. Buying new music.

According to an article in the Boston Globe from 1972 -- this is 11 years before the Atari show, but some of the few hard stats I could find -- Rick Trow Productions staged 7,000 assemblies in 1971, maintained 23 touring companies offering 16 different shows to schools. They put on educational assemblies that promoted products and services from companies that wanted to reach the "youth market" -- CBS Radio, Air France, Eastman Kodak, and others. Its multimedia productions also included titles such as "The Black Experience", "Environment: Challenge to Action", and "The History of Rock and Roll". At the time, according to the article, the company charged a school just $80 per assembly. But by the time of the Atari show in 1983, the company seemed to have changed its business model to offer the shows to schools for free; earning their money entirely from the companies whose products its shows promoted. The companies got access to an audience of young people who might become eager to buy their product (or to ask their parents to get it.) The schools got free access to (hopefully) an educationally worthwhile presentation that would broaden their students' horizons.

A classified advertisement by Rick Trow Productions seeking presenters stated that in the early 1980s, presenters could expect to receive a salary of $100 per week during rehearsal period, and $500 per week for salary and expenses while on tour.

My first interview is with Veronica Wiseman, who was one of the presenters who traveled from school to school putting on the Atari show. Her name at the time was Ronnie Anastasio. Veronica did three "tours" of Expressway to Tomorrow, from January 1983 through April 1984.

(interview)

Next, my interview with Dr. Chuck Sterin, the filmmaker.

(interview)

The interview with Veronica Wiseman took place on October 23, 2020. The interview with Chuck Sterin took place on June 5, 2020.

Thanks to Chuck Sterin and Veronica Wiseman, and to Tom Bregatta, Bob Barto, and Frank Darby, who were also presenters who provided background information for this episode.

If you remember seeing Computers: Expressway to Tomorrow at a school assembly, I'd love to hear your recollections. If you happen to have any of the materials, such as the script, practice tapes, or the film, please contact me.

Check the show notes for links to magazine articles about the show, as well as scans of material that Veronica Wiseman saved, including Rick Trow Productions employee newsletters, a large collection of thank-you and feedback letters from many schools where she presented, and her photographs from that time.

Veronica Wiseman's collection of letters from schools

Rick Trow Productions Employee Newsletters 1983

Veronica's photo album

New Educational Film Show Charts Future Computer Careers for Students in Atari Connection v3n1

Atari Brings Multimedia Computer Show To Schools in AtariAge v2n1

Spring CUE Conference article in Infoworld v5n4

"Taking the Show on the Road" in Personal Computing September 1983


Polishing the Apple

    RetroMacCast 5/23/2021

James and John discuss eBay Finds: postcard pair, boxed Colour Classic, Newton MessagePad 100, and Apple sales poster. John works with the BlueSCSI, and news includes repurposing a TAM, shipping woes, System 7 anniversary, Apple Identity Guide.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 416 - Bob Evans, Capital Children's Museum administrator

    ANTIC The Atari 8-bit Podcast 5/22/2021

Bob Evans, Capital Children's Museum administrator

This is the fourth in our series of interviews about the Atari computers at the Capital Children's Museum.

Bob Evans wore many hats at the museum: he was director of special exhibits, where he worked on the museum's exhibit on the history of human communication, which used several computers, both public-facing and behind the scenes. He was administrator of Superboots, the museum's software publishing lab -- it published the computer art program PAINT! but no other software. Bob was administrator of The Future Center, the museum's public computer lab, and administrator of the museum's summer computer camp for disadvantaged youth.

This interview took place on April 22, 2021.

ANTIC Interview 391 - Tracy Frey, Atari Birthday Girl
 


TMS9900, an Alternate Future

    Advent of Computing 5/16/2021

The TI TMS9900 is a fascinating microprocessor. It was the first 16-bit microprocessor on the market, it has a unique architecture that makes it well suited to multitasking, and it was on IBM's shortlist to power the PC. Today we are looking at this strange chip, and the TI minicomputers that predated it's design. Along the way we will construct a theoretical TI-powered PC, and see how home computing could have changed if IBM took a slightly different path.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


A History Of Text Messages In A Few More Than 160 Characters

    The History of Computing 5/16/2021

Texts are sent and received using SMS, or Short Message Service. Due to the amount of bandwidth available on second generation networks, they were limited to 160 characters initially. You know the 140 character max from Twitter, we are so glad you chose to join us on this journey where we weave our way from the topmast of the 1800s to the skinny jeans of San Francisco with Twitter.

What we want you to think about through this episode is the fact that this technology has changed our lives. Before texting we had answering machines, we wrote letters, we sent more emails but didn’t have an expectation of immediate response. Maybe someone got back to us the next day, maybe not. But now, we rely on texting to coordinate gatherings, pick up the kids, get a pin on a map, provide technical support, send links, send memes, convey feelings in ways that we didn’t do when writing letters. I mean including an animated gif in a letter meant melty peanut butter. Wait, that’s jif. Sorry.

And few technologies have sprung into our every day use so quickly in the history of technology. It took generations if not 1,500 years for bronze working to migrate out of the Vinča Culture and bring an end to the Stone Age. It took a few generations if not a couple of hundred years for electricity to spread throughout the world. The rise of computing took a few generations to spread from first mechanical then to digital and then to personal computing and now to ubiquitous computing. And we’re still struggling to come to terms with job displacement and the productivity gains that have shifted humanity more rapidly than any other time including the collapse of the Bronze Age. 

But the rise of cellular phones and then the digitization of them combined with globalization has put instantaneous communication in the hands of everyday people around the world. We’ve decreased our reliance on paper and transporting paper and moved more rapidly into a digital, even post-PC era. And we’re still struggling to figure out what some of this means. But did it happen as quickly as we identify? Let’s look at how we got here.

Bell Telephone introduced the push button phone in 1963 to replace the rotary dial telephone that had been invented in 1891 and become a standard. And it was only a matter of time before we’d find a way to associate letters to it. Once we could send bits over devices instead of just opening up a voice channel it was only a matter of time before we’d start sending data as well. Some of those early bits we sent were things like typing our social security number or some other identifier for early forms of call routing. Heck the fax machine was invented all the way back in 1843 by a Scottish inventor called Alexander Bain. 

So given that we were sending different types of data over permanent and leased lines it was only a matter of time before we started doing so over cell phones. 

The first cellular networks were analog in what we now think of as first generation, or 1G. GSM, or Global System for Mobile Communications is a standard that came out of the European Telecommunications Standards Institue and started getting deployed in 1991. That became what we now think of as 2G and paved the way for new types of technologies to get rolled out.

The first text message simply said “Merry Christmas” and was sent on December 3rd, 1992. It was sent to Richard Jarvis at Vodafone by Neil Papworth. As with a lot of technology it was actually thought up eight years earlier by Bernard Ghillabaert and Friedhelm Hillebrand. From there, the use cases moved to simply alerting devices of various statuses, like when there was a voice mail. These days we mostly use push notification services for that. 

To support using SMS for that, carriers started building out SMS gateways and by 1993 Nokia was the first cell phone maker to actually support end-users sending text messages. Texting was expensive at first, but adoption slowly increased. We could text in the US by 1995 but cell phone subscribers were sending less than 6 texts a year on average. But as networks grew and costs came down, adoption increased up to a little over one a day by the year 2000. 

Another reason adoption was slow was because using multi-tap to send a message sucked. Multi-tap was where we had to use the 10-key pad on a device to type out messages. You know, ABC are on a 2 key so the first type you tap two it’s the number the next time it’s an A, the next a B, the next a C. And the 3 key is D, E, and F. The 4 is G, H, and I and the 5 is J, K, and L. The 6 is M, N, and O and the 7 is P, Q, R, and S. The 8 is T, U, and V and the 9 is W, X, Y, and Z. This layout goes back to old bell phones that had those letters printed under the numbers. That way if we needed to call 1-800-PODCAST we could map which letters went to what. 

A small company called Research in Motion introduced an Inter@active Pager in 1996 to do two-way paging. Paging services went back decades. My first was a SkyTel, which has its roots in Mississippi when John N Palmer bought a 300 person paging company using an old-school radio paging service. That FCC license he picked up evolved to more acquisitions through Alabama, Loisiana, New York and by the mid-80s growing nationally to 30,000 subscribers in 1989 and over 200,000 less than four years later. A market validated, RIM introduced the BlackBerry on the DataTAC network in 2002, expanding from just text to email, mobile phone services, faxing, and now web browsing. We got the Treo the same year. But that now iconic Blackberry keyboard. Nokia was the first cellular device maker to make a full keyboard for their Nokia 9000i Communicator in 1997, so it wasn’t an entirely new idea.

But by now, more and more people were thinking of what the future of Mobility would look like. The 3rd Generation Partnership Project, or 3GPP was formed in 1998 to dig into next generation networks. They began as an initiative at Nortel and AT&T but grew to include NTT DoCoMo, British Telecom, BellSouth, Ericsson, Telnor, Telecom Italia, and France Telecom - a truly global footprint. With a standards body in place, we could move faster and they began planning the roadmap for 3G and beyond (at this point we’re on 5G). 

Faster data transfer rates let us do more. We weren’t just sending texts any more. MMS, or Multimedia Messaging Service was then introduced and use grow to billions and then hundreds of millions of photos sent encoded using technology like what we do with MIME for multimedia content on websites. At this point, people were paying a fee for every x number of messages and ever MMS. Phones had cameras now so in a pre-Instagram world this was how we were to share them. Granted they were blurry by modern standards, but progress. Devices became more and more connected as data plans expanded to eventually often be unlimited.

But SMS was still slow to evolve in a number of ways. For example, group chat was not really much of a thing. That is, until 2006 when a little company called Twitter came along to make it easy for people to post a message to their friends. Initially it worked over text message until they moved to an app. And texting was used by some apps to let users know there was data waiting for them. Until it wasn’t. Twilio was founded in 2008 to make it easy for developers to add texting to their software. Now every possible form of text integration was as simple as importing a framework.

Apple introduced the Apple Push Notification service, or APNs in 2009. By then devices were always connected to the Internet and the send and receive for email and other apps that were fine on desktops were destroying battery life. APNs then allowed developers to build apps that could only establish a communication channel when they had data. Initially we used 256 bytes in push notifications but due to the popularity and different implementation needs, notifications could grow to 2 kilobytes in 2015 and moved to an HTTP/2 interface and a 4k payload in 2015. This is important because it paved the way for iChat, now called iMessage or just Messages - and then other similar services for various platforms that moved instant messaging off SMS and over to the vendor who builds a device rather than using SMS or MMS messaging. 

Facebook Messenger came along in 2011, and now the kids use Instagram messaging, Snapchat, Signal or any number of other messaging apps. Or they just text. It’s one of a billion communications tools that also include Discord, Slack, Teams, LinkedIn, or even the in-game options in many a game. Kinda’ makes restricting communications a bit of a challenge at this point and restricting spam. 

My kid finishes track practice early. She can just text me. My dad can’t make it to dinner. He can just text me. And of course I can get spam through texts. And everyone can message me on one of about 10 other apps on my phone. And email. On any given day I receive upwards of 300 messages, so sometimes it seems like I could just sit and respond to messages all day every day and still never be caught up. And get this - we’re better for it all. We’re more productive, we’re more well connected, and we’re more organized. Sure, we need to get better at having more meaningful reactions when we’re together in person. We need to figure out what a smaller, closer knit group of friends is like and how to be better at being there for them rather than just sending a sad face in a thread where they’re indicating their pain. 

But there’s always a transition where we figure out how to embrace these advances in technology. There are always opportunities in the advancements and there are always new evolutions built atop previous evolutions. The rate of change is increasing. The reach of change is increasing. And the speed changes propagate are unparalleled today. Some will rebel against changes, seeking solace in older ways. It’s always been like that - the Amish can often be seen on a buggy pulled by a horse so a television or phone capable of texting would certainly be out of the question. Others embrace technology faster than some of us are ready for. Like when I realized some people had moved away from talking on phones and were pretty exclusively texting. Spectrums.

I can still remember picking up the phone and hearing a neighbor on with a friend. Party lines were still a thing in Dahlonega, Georgia when I was a kid. I can remember the first dedicated line and getting in trouble for running up a big long distance bill. I can remember getting our first answering machine and changing messages on it to be funny. Most of that was technology that moved down market but had been around for a long time. The rise of messaging on the cell phone then smart phone though - that was a turning point that started going to market in 1993 and within 20 years truly revolutionized human communication. How can we get messages faster than instant? Who knows, but I look forward to finding out. 


Jeremy's Retro Bar

    RetroMacCast 5/16/2021

James and John discuss eBay Finds: iMac piggy bank,  Apple IIGS Woz Edition, and black Quadra 700. Jeremy returns to the podcast with a show of his own, Jeremy's Retro Bar. News includes classic Mac NFTs on iPad, Lego Mac Plus, and BlueSCSI.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 415 - Peter Hirshberg, Capital Children's Museum

    ANTIC The Atari 8-bit Podcast 5/15/2021

Peter Hirshberg, Capital Children's Museum

Peter Hirshberg was curator of the communications wing of the Capital Children's Museum in the early 1980s, where he helped build The Future Center, the computer lab outfitted with Atari 800 computers; and museum exhibits, some of which were computer controlled.

This interview took place on April 12, 2021. In it, we discuss Ann Lewin-Benham, director of the museum; and Guy Nouri, from the Superboots lab, both of whom I previously interviewed.

Compu-tots and Other Joys of Museum Life by Peter Hirshberg, Instructional Innovator, Sept 1981

ANTIC Interview 410 - Ann Lewin-Benham, Director of Capital Children's Museum

ANTIC Interview 407 - Guy Nouri, Interactive Picture Systems


Project Xanadu

    The History of Computing 5/13/2021

Java, Ruby, PHP, Go. These are web applications that dynamically generate code then interpreted as a file by a web browser. That file is rarely static these days and the power of the web is that an app or browser can reach out and obtain some data, get back some xml or json or yaml, and provide an experience to a computer, mobile device, or even embedded system. The web is arguably the most powerful, transformational technology in the history of technology.

But the story of the web begins in philosophies that far predate its inception. It goes back to a file, which we can think of as a document, on a computer that another computer reaches out to and interprets. A file comprised of hypertext. Ted Nelson coined the term hypertext. Plenty of others put the concepts of linking objects into the mainstream of computing. But he coined the term that he’s barely connected to in the minds of many.  Why is that?

Tim Berners-Lee invented the World Wide Web in 1989. Elizabeth Feinler developed a registry of names that would evolve into DNS so we could find computers online and so access those web sites without typing in impossible to remember numbers. Bob Kahn and Leonard Kleinrock were instrumental in the Internet Protocol, which allowed all those computers to be connected together, providing the schemes for those numbers. Some will know these names; most will not. 

But a name that probably doesn’t come up enough is Ted Nelson. His tale is one of brilliance and the early days of computing and the spread of BASIC and an urge to do more. It’s a tale of the hacker ethic. And yet, it’s also a tale of irreverence - to be used as a warning for those with aspirations to be remembered for something great. Or is it?

Steve Jobs famously said “real artists ship.” Ted Nelson did ship. Until he didn’t. Let’s go all the way back to 1960, when he started Project Xanadu. Actually, let’s go a little further back first. 

Nelson was born to TV directory Ralph Nelson and Celeste Holm, who won an Academy Award for her role in Gentleman’s Agreement in 1947 and took home another pair of nominations through her career, and for being the original Ado Annie in Oklahoma. His dad worked on The Twilight Zone - so of course he majored in philosophy at Swarthmore College and then went off to the University of Chicago and then Harvard for graduate school, taking a stab at film after he graduated. But he was meant for an industry that didn’t exist yet but would some day eclipse the film industry: software.

 While in school he got exposed to computers and started to think about this idea of a repository of all the world’s knowledge. And it’s easy to imagine a group of computing aficionados sitting in a drum circle, smoking whatever they were smoking, and having their minds blown by that very concept. And yet, it’s hard to imagine anyone in that context doing much more. And yet he did.

Nelson created Project Xanadu in 1960. As we’ll cover, he did a lot of projects during the remainder of his career. The Journey is what is so important, even if we never get to the destination. Because sometimes we influence the people who get there. And the history of technology is as much about failed or incomplete evolutions as it is about those that become ubiquitous. 

It began with a project while he was enrolled in Harvard grad school. Other word processors were at the dawn of their existence. But he began thinking through and influencing how they would handle information storage and retrieval. 

Xanadu was supposed to be a computer network that connected humans to one another. It was supposed to be simple and a scheme for world-wide electronic publishing. Unlike the web, which would come nearly three decades later, it was supposed to be bilateral, with broken links self-repairing, much as nodes on the ARPAnet did. His initial proposal was a program in machine language that could store and display documents. Being before the advent of Markdown, ePub, XML, PDF, RTF, or any of the other common open formats we use today, it was rudimentary and would evolve over time. Keep in mind. It was for documents and as Nelson would say later, the web - which began as a document tool, was a fork of the project. 

The term Xanadu was borrowed from Samuel Taylor Coleridge’s Kubla Khan, itself written after some opium fueled dreams about a garden in Kublai Khan’s Shangdu, or Xanadu.In his biography, Coleridge explained the rivers in the poem supply “a natural connection to the parts and unity to the whole” and he said a “stream, traced from its source in the hills among the yellow-red moss and conical glass-shaped tufts of bent, to the first break or fall, where its drops become audible, and it begins to form a channel.” 

Connecting all the things was the goal and so Xanadu was the name. He gave a talk and presented a paper called “A File Structure for the Complex, the Changing and the Indeterminate” at the Association for Computing Machinery in 1965 that laid out his vision. This was the dawn of interactivity in computing. Digital Equipment had launched just a few years earlier and brought the PDP-8 to market that same year. The smell of change was in the air and Nelson was right there. 

After that, he started to see all these developments around the world. He worked on a project at Brown University to develop a word processor with many of his ideas in it. But the output of that project, as with most word processors since - was to get things printed. He believed content was meant to be created and live its entire lifecycle in the digital form. This would provide perfect forward and reverse citations, text enrichment, and change management. And maybe if we all stand on the shoulders of giants, it would allow us the ability to avoid rewriting or paraphrasing the works of others to include them in own own writings. We could do more without that tedious regurgitation. 

He furthered his counter-culture credentials by going to Woodstock in 1969. Probably not for that reason, but it happened nonetheless. And he traveled and worked with more and more people and companies, learning and engaging and enriching his ideas. And then he shared them. 

Computer Lib/Dream Machines was a paperback book. Or two. It had a cover on each side. Originally published in 1974, it was one of the most important texts of the computer revolution. Steven Levy called it an epic. It’s rare to find it for less than a hundred bucks on eBay at this point because of how influential it was and what an amazing snapshot in time it represents. 

Xanadu was to be a hypertext publishing system in the form of Xanadocs, or files that could be linked to from other files. A Xanadoc used Xanalinks to embed content from other documents into a given document. These spans of text would become transclusions and change in the document that included the content when they changed in the live document. The iterations towards working code were slow and the years ticked by. That talk in 1965 gave way to the 1970s, then 80s. Some thought him brilliant. Others didn’t know what to make of it all. But many knew of his ideas for hypertext and once known it became deterministic.

Byte Magazine published many of his thoughts in 1988 called “Managing Immense Storage” and by then the personal computer revolution had come in full force. Tim Berners-Lee put the first node of the World Wide Web online the next year, using a protocol they called Hypertext Transfer Protocol, or http. Yes, the hypertext philosophy was almost a means of paying homage to the hard work and deep thinking Nelson had put in over the decades. But not everyone saw it as though Nelson had made great contributions to computing. 

“The Curse of Xanadu” was an article published in Wired Magazine in 1995. In the article, the author points out the fact that the web had come along using many of the ideas Nelson and his teams had worked on over the years but actually shipped - whereas Nelson hadn’t. Once shipped, the web rose in popularity becoming the ubiquitous technology it is today. The article looked at Xanadu as vaporware. But there is a deeper, much more important meaning to Xanadu in the history of computing. 

Perhaps inspired by the Wired article, the group released an incomplete version of Xanadu in 1998. But by then, other formats - including PDF which was invented in 1993 and .doc for Microsoft Word, were the primary mechanisms we stored documents and first gopher and then the web were spreading to interconnect humans with content.

https://www.youtube.com/watch?v=72M5kcnAL-4

The Xanadu story isn’t a tragedy. Would we have had hypertext as a part of Douglas Engelbart’s oNLine System without it? Would we have object-oriented programming or later the World Wide Web without it? The very word hypertext is almost an homage, even if they don’t know it, to Nelson’s work. And the look and feel of his work lives on in places like GitHub, whether directly influenced or not, where we can see changes in code side-by-side with actual production code, changes that are stored and perhaps rolled back forever.

Larry Tessler coined the term Cut and Paste. While Nelson calls him a friend in Werner Herzog’s Lo and Behold, Reveries of the Connected World, he also points out that Tessler’s term is flawed. And I think this is where we as technologists have to sometimes trim down our expectations of how fast evolutions occur. We take tiny steps because as humans we can’t keep pace with the rapid rate of technological change. We can look back and see a two steps forward and one step back approach since the dawn of written history. Nelson still doesn’t think the metaphors that harken back to paper have any place in the online written word. 

Here’s another important trend in the history of computing. As we’ve transitioned to more and more content living online exclusively, the content has become diluted. One publisher I wrote online pieces for asked that they all be +/- 700 words and asked that paragraphs be no more than 4 sentences long (preferably 3) and the sentences should be written at about a 5th or 6th grade level. Maybe Nelson would claim that this de-evolution of writing is due to search engine optimization gamifying the entirety of human knowledge and that a tool like Xanadu would have been the fix. After all, if we could borrow the great works of others we wouldn’t have to paraphrase them. But I think as with most things, it’s much more nuanced than that. 

Our always online, always connected brains can only accept smaller snippets. So that’s what we gravitate towards. Actually, we have plenty of capacity for whatever we actually choose to immerse ourselves into. But we have more options than ever before and we of course immerse ourselves into video games or other less literary pursuits. Or are they more literary? Some generations thought books to be dangerous. As do all oppressors. So who am I to judge where people choose to acquire knowledge or what kind they indulge themselves in. Knowledge is power and I’m just happy they have it. And they have it in part because others were willing to water own the concepts to ship a product. Because the history of technology is about evolutions, not revolutions. And those often take generations. And Nelson is responsible for some of the evolutions that brought us the ht in http or html. And for that we are truly grateful!

As with the great journey from Lord of the Rings, rarely is greatness found alone. The Xanadu adventuring party included Cal Daniels, Roger Gregory, Mark Miller, Stuart Greene, Dean Tribble, Ravi Pandya, became a part of Autodesk in the 80s, got rewritten in Smalltalk, was considered a rival to the web, but really is more of an evolutionary step on that journey. If anything it’s a divergence then convergence to and from Vannevar Bush’s Memex.

So let me ask this as a parting thought? Are the places you are not willing to sacrifice any of your core designs or beliefs worth the price being paid? Are they worth someone else ending up with a place in the history books where (like with this podcast) we oversimplify complex topics to make them digestible? Sometimes it’s worth it. In no way am I in a place to judge the choices of others. Only history can really do that - but when it happens it’s usually an oversimplification anyways… So the building blocks of the web lie in irreverence - in hypertext. And while some grew out of irreverence and diluted their vision after an event like Woodstock, others like Nelson and his friend Douglas Englebart forged on. And their visions didn’t come with commercial success. But as an integral building block to the modern connected world today they represent as great a mind as practically anyone else in computing. 


ANTIC Interview 414 - Bob Puff, Computer Software Services

    ANTIC The Atari 8-bit Podcast 5/8/2021

Bob Puff, Computer Software Services

Bob Puff is owner of Computer Software Services, a company that began creating hardware and software for the Atari 8-bit computers in 1982. Bob became president of the company in 1991. He designed a bevy of hardware products for the Atari computers, including The Black Box, a hard drive host adapter; The Multiplexer, a networking system; the UltraSpeed Plus operating system upgrade; upgrades for the XF551 floppy drive; the Super-E Burner EPROM burner; and others. He also created a number of popular utility programs, including the BobTerm terminal program; Disk Communicator, to convert boot disks to a single compressed file for transfer over modem; and MYDOS version 4.53; among other software.

This interview took place on April 27, 2021.

Computer Software Services legacy site

1993 Computer Software Services catalog scan

ANTIC Interview 393 - Charles Marslett, MYDOS and FastChip


Code and Dagger (1990)

    Mac Folklore Radio 5/7/2021

The FBI’s attempted investigation of the nuPrometheus League.

I wish there was a dramatic conclusion to this 1990 editorial, but we’ve heard nothing from the nuPrometheus League since their first and only dispatch.

Original text from Macworld Magazine, September 1990.


Project Xanadu

    Advent of Computing 5/2/2021

Project Xanadu, started in 1960, is perhaps the oldest hypertext system. It's creator, Ted Nelson, coined the term hypertext just to describe Xanadu. But it's not just a tool for linking data. Nelson's vision of hypertext is a lot more complicated than what we see in the modern world wide web. In his view, hypertext is a means to reshape the human experience. Today we are starting a dive into the strange connection between hypertext, networking, and digital utopianism.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Six Colored iMacs

    RetroMacCast 5/2/2021

James and John discuss eBay Finds: 128k Mac with box, Alice reproduction floppy, and Newton dummy. They get Mission Starlight and Sky Shadow running, and news is all about the Apple Spring Loaded event.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 413 - Valerie (Atkinson) Manfull, Atari Game Research Group

    ANTIC The Atari 8-bit Podcast 5/1/2021

Valerie (Atkinson) Manfull, Atari Game Research Group

Valerie Atkinson was a member of Atari's Game Research Group. Now named Valerie Manfull, she was on the team that designed and programmed the game Excalibur, along with Chris Crawford and Larry Summers. Excalibur was published by Atari Program Exchange in fall 1983. She is also one of the programmes of Ballsong, along with Douglas Crockford. Ballsong is a music and graphics demo program released by Atari, in which a ball bounces on the screen in response to an improvised tune. She was one of the programmers, with Ann Marion, of TV Fishtank, a demonstration of an artificially intelligent fish. (It's unclear if the fishtank program was released anywhere, though it apparently was shown at the 1984 SIGgraph conference.)

This interview took place on April 22, 2021.

ANTIC Episode 4 - Chris Crawford

ANTIC Interview 240 - Douglas Crockford

TV Fishtank at SIGgraph

Jim Leiterman describes TV Fishtank

Chris Crawford describes the development of Excalibur in The Art of Computer Game Design

Excalibur announced in Atari Program Exchange, fall 1983

Excalibur review in Atari Connection

Excalibur at AtariMania

Video of Ballsong


Jason Moore PhD

    ANTIC The Atari 8-bit Podcast 4/30/2021

ANTIC Episode 77 - Jason Moore, PhD 

In this episode of ANTIC The Atari 8-Bit Computer Podcast… Jason Moore joins us to discuss his atariprojects.org Web site and we discuss all the news rocking the Atari 8-bit world...

READY!

Recurring Links 

Floppy Days Podcast 

AtariArchives.org 

AtariMagazines.com 

Kevin’s Book “Terrible Nerd” 

New Atari books scans at archive.org 

ANTIC feedback at AtariAge 

Atari interview discussion thread on AtariAge 

Interview index: here 

ANTIC Facebook Page 

AHCS 

Eaten By a Grue 

Next Without For 

What We’ve Been Up To

News 

Shows

YouTube videos this month

New at Archive.org


- Hobby not fun anymore? ; ECB TIMER ; Review of Doubleback

    The CoCo Crew Podcast 4/30/2021

Episode 71 Show Notes -- http://cococrew.org/cococrew-podcast-71.html


Eaten By A Cruise

    Eaten By A Grue: Infocom, Text Adventures, and Interactive Fiction 4/28/2021

Kay and Carrington set sail on the virtual high seas to give a talk at this year's JoCo Cruise, an annual oceangoing event for technophiles, tabletop gamers, and creative-minded people. In other words, a bunch of nerds. The perfect venue to discuss all things Infocom.


Can you hear me now?

    RetroMacCast 4/25/2021

James and John discuss eBay Finds: Test Drive a Mac brochure, Microloop 1100 Spirometer, Braun/Apple calculator. They look back at Macworld April 1991, and news includes upcoming Apple event rumors, faux Mac BBS, and chimes of death.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


An Abridged History Of Instagram

    The History of Computing 4/24/2021

This was a hard episode to do. Because telling the story of Instagram is different than explaining the meaning behind it. You see, on the face of it - Instagram is an app to share photos. But underneath that it’s much more. It’s a window into the soul of the Internet-powered culture of the world. Middle schoolers have always been stressed about what their friends think. It’s amplified on Instagram. People have always been obsessed with and copied celebrities - going back to the ages of kings. That too is on Instagram. We love dogs and cute little weird animals. So does Instagram. 

Before Instagram, we had photo sharing apps. Like Hipstamatic. Before Instagram, we had social networks - like Twitter and Facebook. How could Instagram do something different and yet, so similar? How could it offer that window into the world when the lens photos are snapped with are as though through rose colored glasses? Do they show us reality or what we want reality to be? Could it be that the food we throw away or the clothes we donate tell us more about us as humans than what we eat or keep? Is the illusion worth billions of dollars a year in advertising revenue while the reality represents our repressed shame?

Think about that as we go through this story.

If you build it, they will come. Everyone who builds an app just kinda’ automatically assumes that throngs of people will flock to the App Store, download the app, and they will be loved and adored and maybe even become rich. OK, not everyone thinks such things - and with the number of apps on the stores these days, the chances are probably getting closer to those that a high school quarterback will play in the NFL. But in todays story, that is exactly what happened. 

And Kevin Systrom had already seen it happen. He was offered a job as one of the first employees at Facebook while still going to Stanford. That’ll never be a thing. Then while on an internship he was asked to be one of the first Twitter employees. That’ll never be a thing either. But they were things, obviously!

So in 2010, Systrom started working on an app he called Burbn and within two years sold the company, then called Instagram for one billion dollars. In doing so he and his co-founder Mike Krieger helped forever changing the deal landscape for mergers and acquisitions of apps, and more profoundly giving humanity lenses with which to see a world we want to see - if not reality.

Systrom didn’t have a degree in computer science. In fact, he taught himself to code after working hours, then during working hours, and by osmosis through working with some well-known founders. 

Burbn was an app to check in and post plans and photos. It was written in HTML5 and in a Cinderella story, he was able to raise half a million dollars in funding from Baseline Ventures and Andreesen Horowitz, bringing in Mike Krieger as a co-founder. 

At the time, Hipstamatic was the top photo manipulation and filtering app. Given that the iPhone came with a camera on-par (if not better) than most digital point and shoots at the time, the pair re-evaluated the concept and instead leaned further into photo sharing, while still maintaining the location tagging.

The original idea was to swipe right and left, as we do in apps like Tinder. But instead they chose to show photos in chronological order and used a now iconic 1:1 aspect ratio, or the photos were square, so there was room on the screen to show metadata and a taste of the next photo - to keep us streaming. The camera was simple, like the Holga camera Systrom had been given while stying abroad when at Stanford. That camera made pictures a little blurry and in an almost filtered way made them loo almost artistic. 

After System graduated from Stanford in 2006, he worked at Google, then NextStop, and then got the bug to make his own app. And boy did he. One thing though, even his wife Nicole didn’t think she could take good photos having seen those from a friend of Systrom’s. He said the photos were so good because the filters. And so we got the first filter, X-Pro 2, so she could take great photos on the iPhone 3G. 

Krieger shared the first post on Instagram on July 16, 2010 and Systrom followed up within a few hours with a picture of a dog. The first of probably a billion dog photos (including a few of my own). And they officially published Instagram on the App Store in October of 2010.

After adding more and more filters, Systrom and Krieger closed in on one of the greatest growth hacks of any app: they integrated with Facebook, Twitter, and Foursquare so you could take the photo in Instagram and shoot it out to one of those apps - or all three.

At the time Facebook was more of a browser tool. Few people used the mobile app. And for those that did try and post photos on Facebook, doing so was laborious, using a mobile camera roll in the app and taking more steps than needed. Instagram became the perfect glue to stitch other apps together. And rather than always needing to come up with something witty to say like on Twitter, we could just point the camera on our phone at something and hit a button. 

The posts had links back to the photo on Instagram. They hit 100,000 users in the first week and a million users by the end of the year. Their next growth hack was to borrow the hashtag concept from Twitter and other apps, which they added in January of 2011.

Remember how Systrom interned at Odeo and turned down the offer to go straight to Twitter after college? Twitter didn’t have photo sharing at the time, but Twitter co-founder Jack Dorsey had showed System plenty of programming techniques and the two stayed in touch. He became an angel investor in a $7 million Series A and the first real influencer on the platform, sending that link to every photo to all of his Twitter followers every time he posted. The growth continued. June, 2011 they hit 5 million users, and doubled to 10 million by September of 2011. I was one of those users, posting the first photo to @krypted in the fall - being a nerd it was of the iOS 5.0.1 update screen and according to the lone comment on the photo my buddy @acidprime apparently took the same photo. 

They spent the next few months just trying to keep the servers up and running and released an Android of the app in April of 2012, just a couple of days before taking on $50 million dollars in venture capital. But that didn’t need to last long - they sold the company to Facebook for a billion dollars a few days later, effectively doubling each investor in that last round of funding and shooting up to 50 million users by the end of the month. 

At 13 employees, that’s nearly $77 million dollars per employee. Granted, much of that went to Systrom and the investors. The Facebook acquisition seemed great at first. Instagram got access to bigger resources than even a few more rounds of funding would have provided. 

Facebook helped them scale up to 100 million users within a year and following Facebook TV, and the brief but impactful release of Vine at Twitter, Instagram added video sharing, photo tagging, and the ability to add links in 2013.  Looking at a history of their feature releases, they’re slow and steady and probably the most user-centered releases I’ve seen. And in 2013, they grew to 150 million users, proving the types of rewards that come from doing so. 

With that kind of growth it might seem that it can’t last forever - and yet on the back of new editing tools, a growing team, and advertising tools, they managed to hit a staggering 300 million users in 2014.

While they released thoughtful, direct, human sold advertising before, they opened up the ability to buy ads to all advertisers, piggy backing on the Facebook ad selling platform in 2015. That’s the same year they introduced Boomerang, which looped photos in forward and reverse. It was cute for a hot minute. 

2016 saw the introduction of analytics that included demographics, impressions, likes, reach, and other tools for businesses to track performance not only of ads, but of posts. As with many tools, it was built for the famous influencers that had the ear of the founders and management team - and made available to anyone. They also introduced Instagram Stories, which was a huge development effort and they owned that they copied it from Snapchat - a surprising and truly authentic move for a Silicon Valley startup. And we could barely call them a startup any longer, shooting over half a billion users by the middle of the year and 600 million by the end of the year. 

That year, they also brought us live video, a Windows client, and one of my favorite aspects with a lot of people posting in different languages, they could automatically translate posts. 

But something else happened in 2016. Donald Trump was elected to the White House. This is not a podcast about politics but it’s safe to say that it was one of the most divisive elections in recent US history. And one of the first where social media is reported to have potentially changed the outcome. Disinformation campaigns from foreign actors combined with data illegally obtained via Cambridge Analytica on the Facebook network, combined with increasingly insular personal networks and machine learning-driven doubling down on only seeing things that appealed to our world view led to many being able to point at networks like Facebook and Twitter as having been party to whatever they thought the “other side” in an election had done wrong. 

Yet Instagram was just a photo sharing site. They put the users at the center of their decisions. They promoted the good things in life. While Zuckerberg claimed that Facebook couldn’t have helped change any outcomes and that Facebook was just an innocent platform that amplified human thoughts - Systrom openly backed Hillary Clinton. And yet, even with disinformation spreading on Instagram, they seemed immune from accusations and having to go to Capital Hill to be grilled following the election. Being good to users apparently has its benefits. 

However, some regulation needed to happen. 2017, the Federal Trade Commission steps in to force influencers to be transparent about their relationship with advertisers - Instagram responded by giving us the ability to mark a post as sponsored. Still, Instagram revenue spiked over 3 and a half billion dollars in 2017.

Instagram revenue grew past 6 billion dollars in 2018. Systrom and Krieger stepped away from Instagram that year. It was now on autopilot.  Although I think all chief executives have a 

Instagram revenue shot over 9 billion dollars in 2019. In those years they released IGTV and tried to get more resources from Facebook, contributing far more to the bottom line than they took. 

2020 saw Instagram ad revenue close in on 13.86 billion dollars with projected 2021 revenues growing past 18 billion.

In The Picture of Dorian Gray from 1890, Lord Henry describes the impact of influence as destroying our genuine and true identity, taking away our authentic motivations, and as Shakespeare would have put it - making us servile to the influencer. Some are famous and so become influencers on the product naturally, like musicians, politicians, athletes, and even the Pope. . Others become famous due to getting showcased by the @instagram feed or some other prominent person. These influencers often stage a beautiful life and to be honest, sometimes we just need that as a little mind candy. But other times it can become too much, forcing us to constantly compare our skin to doctored skin, our lifestyle to those who staged their own, and our number of friends to those who might just have bought theirs. And seeing this obvious manipulation gives some of us even more independence than we might have felt before. We have a choice: to be or not to be. 

The Instagram story is one with depth. Those influencers are one of the more visible aspects, going back to the first that posted sponsored photos from Snoop Dogg. And when Mark Zuckerberg decided to buy the company for a billion dollars, many thought he was crazy. But once they turned on the ad revenue machine, which he insisted Systrom wait on until the company had enough users, it was easy to go from 3 to 6 to 9 to over 13 and now likely over 18 billion dollars. That’s a greater than 30:1 return on investment, helping to prove that such lofty acquisitions aren’t crazy. 

It’s also a story of monopoly, or at least of suspected monopolies. Twitter tried to buy Instagram and Systrom claims to have never seen a term sheet with a legitimate offer. Then Facebook swooped in and helped fast-track regulatory approval of the acquisition. With the acquisition of WhatsApp, Facebook owns four of the top 6 social media sites, with Facebook, WhatsApp, Facebook Messenger, and Instagram all over a billion users and YouTube arguably being more of a video site than a true social network. And they tried to buy Snapchat - only the 17th ranked network. 

More than 50 billion photos have been shared through Instagram. That’s about a thousand a second. Many are beautiful...


ANTIC Interview 412 - Linda Brownstein, Atari VP Special Projects

    ANTIC The Atari 8-bit Podcast 4/24/2021

Linda Brownstein, Atari VP Special Projects

As I've researched Atari and it's 8-bit computer projects over the years, one name has come up over and over again, attached to the most interesting projects. Linda S. Gordon. Executive Director of Atari Computer Camps. Linda. Executive Producer of The Magic Room, Atari's movie about its camps. Atari's collaboration with Club Med to offer computer labs at vacation destinations — Linda again. Atari Club, the fan group that published Atari Age magazine - Linda launched that. More recently, in my interview with Ann Lewin-Benham of the Capital Children's Museum, Linda's name came up once again -- she was the liaison between Atari and the museum. Linda worked on the most interesting projects.

Today, her name is Linda Brownstein. Linda joined Atari in December 1980 as Vice President of Special Projects, where she worked on most of  the projects that I mentioned before. In October 1983 she became Senior Vice President in Atari's  Education group. She left the company in July 1984 after Jack Tramiel took over the company.

This interview took place on April 21, 2021.

ANTIC Interview 78 - Manny Gerard, The Man Who Fired Nolan

ANTIC Special Episode - Atari Summer Camp

ANTIC Interview 410 - Ann Lewin-Benham, Capital Children's Museum

ANTIC Interview 185 - Ted Kahn

Atari Computer Camps — The Magic Room

Video version of this interview


C Level, Part II

    Advent of Computing 4/18/2021

Even after nearly 50 years C remains a force in the programming world. Anytime you brows the web, or even log into a computer, C is somewhere in the background. This episode I wrap up my series on C by looking at it's early development and spread. We will get into the 1st and 2nd C compilers ever written, and take a look at how a banned book lead to generations of avid C programmers.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Our Magnificent Obsession

    RetroMacCast 4/18/2021

James and John discuss eBay Finds: JLPGA PowerBook 170, LaserWriter Plus, and Macintosh IIfx.  They examine the Twentieth Anniversary Macintosh Experience CDROM, and news includes WWDC announced, OS 9.2 on Switch, and latest NanoRaptor creations.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 411 - Mark Simonson, Atari Artist and Font Designer

    ANTIC The Atari 8-bit Podcast 4/17/2021

Mark Simonson, Atari Artist and Font Designer

Mark Simonson used his Atari computers who create art that was published in magazines in the 1980s, including a portrait of Nolan Bushnell that was commissioned by TWA Ambassador, an inflight magazine; a colorful street scene for the cover of Minnesota Monthly, the magazine of Minnesota Public Radio; and a juggler for the cover of Credit Union Advantage magazine, among others.

Professionally, Mark is a font designer. He created Atari Classic, a free TrueType font family for modern computers that looks like the Atari 8-bit screen font. Today, you'll see Atari Classic used in many Atari emulators, web sites, the WUDSN IDE, and elsewhere.

This interview took place on April 15, 2021.

Mark's Atari reminisce blog post

Mark's Mac/Atari Fusion site

Mark's Nolan Bushnell portrait in Hi-Res Magazine Issue 1

A wild Mark appears on AtariAge

FujiNet

This interview on YouTube


Ep. 27: Oct 1982: Worm War I

    Player/Missile 4/17/2021

A friend gets his first game published in Computers & Video Games! 6 other magazines this episode, and I try to dissect my first kernel game, Worm War I. Or is it 1? It’s a super important distinction.

Production Notes


The Dirt on Apple Security (1989)

    Mac Folklore Radio 4/15/2021

The early days of Apple’s culture of secrecy. If you had people digging through the garbage bins outside your corporate headquarters, you would be paranoid too!

Original text from Macworld Magazine, November 1989.

Introductory news clip from The Computer Chronicles with bonus crazy background saxophone for some reason.

Hugo Fiennes quote from the Computer History Museum’s iPhone development team panel discussion.

Steve Jobs’ “Super Secret Apple Rumours” podcast from the MWSF 2006 GarageBand demo.

Alleged insider comments on the damage Apple’s internal secrecy has done to Mac OS X at Michael Tsai’s blog, one of the few Macintosh news sources worth reading these days.


Blatantly Bulging

    RetroMacCast 4/11/2021

James and John discuss eBay Finds: Elements of Design, PowerBook 180c, and Quadra 605.  They look back at MacAddict April 2001, and news includes MacFilm, and the best and worst Apple products of all time.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 410 - Ann Lewin-Benham, Director of Capital Children's Museum

    ANTIC The Atari 8-bit Podcast 4/10/2021

Ann Lewin-Benham, Director of Capital Children's Museum

Ann Lewin-Benham was executive director of the Capital Children's Museum in Washington, D.C. The museum was home to the first public-access computer center in the nation’s capital, and indeed, one of the first in the United States. In 1981, Atari and Apple each donated dozens of computers to the museum. The exact number is unclear, but 30 is the number I've seen most often for Atari's contribution.

The computer lab was called The Future Center. There, the museum offered computer literacy classes for people of all ages, from Compu-Tots for preschoolers, to programming classes for adults, there was even a computer literacy session for members of Congress. It also used the lab for birthday parties. (Last year, I interviewed a woman who had her 8th birthday party at the museum.) The museum used more of its computers in its exhibit on communication. It established a software development laboratory, called Superboots, in which developers created custom softare for the museum, and one product that was released commercially: the graphics program PAINT!

In a 1982 article titled A Day At The Capital Children's Museum, Melanie Graves described the scene:

"My twelve-year-old friend Sarah and I went to the museum to explore the computers. There are several dozen computers scattered throughout the building which are used for exhibits, classroom teaching and the development of educational software...

A machine that calls itself "Wisecracker" is the noisest of the computers that beckon visitors to the Communication exhibit. "My-name- is-Wise-crack-er," it says in a monotone, "Come-type-to-me." This message repeats endlessly until someone types at the keyboard or turns off the computer. "Hello, how are you?" Sarah typed, and pressed the return key. "Hel-lo-how-are-you," the machine’s voice responded. Sarah typed for awhile longer and then proclaimed, "It sure is dumb, but its voice is kind of cute."

The computer next to Wisecracker has a data base program that asked Sarah her name, where she came from, and other questions. It informed her that she was the thirty-seventh person from Virginia to type in data that day... "Fifty-five percent of the people who came here were girls," she told me. Next to the data base, a computer is set up with a music program. Sarah pressed some random keys, causing notes to sound. At the same time, the letter names of the notes appeared on the keys of a piano that was displayed on the screen.

There is also a Teletext terminal that tells inquirers about weather predictions, and news releases, the latest acquisitions at the public library, local cultural events and whatever else has been entered into the data base for that day...

After playing with Teletext, Sarah and I went to the Future Center, a room equipped with twenty Atari 800s. On weekdays, the classroom is available to school groups ranging from prekindergarten to high school. On weekends, families arrive for courses in programming. Classes have also been created for working people, senior citizens, community groups, congressional spouses and other special interest groups. This summer more than sixty students from the Washington, D.C. public schools attended one of two free month-long computer camps at the museum."

This interview took place on April 2, 2021.

Ann's web site

Museum in Atari ConnectionVolume 1 Number 4

A Day At The Capital Children's Museum

 
 


C Level, Part I

    Advent of Computing 4/4/2021

C is easily one of the most influential programming languages in the world, and it's also one of the most popular languages in the world. Even after close to 50 years it remains in widespread and sustained use. In this series we are going to look at how C was developed, how it spread, and why it remains so relevant. To do that we need to start with background, and look at what exactly influenced C. This episode we are diving into some more ALGOL, CPL, BCPL, and eventually B.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Recreation or Recreation?

    RetroMacCast 4/4/2021

James and Steve from Mac84 discuss eBay Finds: lot of eight Macs, Mac 400K external floppy drive with box, and Apple Shinjuku store opening pin.  Steve gives us an update on his Mac84 projects, and news includes the 20th anniversary of Mac OS X, and the Mac SE/30 logic board recreation.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 409 - Ed Fries: Romox Ant Eater, Princess and Frog, Sea Chase

    ANTIC The Atari 8-bit Podcast 4/3/2021

Ed Fries: Romox Ant Eater, Princess and Frog, Sea Chase

Ed Fries programmed three games for the Atari 8-bit computers, which were published on cartridge by Romox: Sea Chase, Ant Eater, and Princess and Frog. His forth game for Romox, Nitro, was unfinished because the company went out of business before Ed was done coding it.

Years later, Ed became vice president of game publishing at Microsoft where he oversaw the creation of the Xbox. In 2010, Ed released Halo 2600, a demake of the Halo video for the Atari 2600. In 2013, he coded an Atari 2600 version of Rally X.

This interview took place on March 11, 2021.

After the interview, Ed sent me the assembly language source code to five games, which he graciously released as open source. You'll find the code for Sea Chase, Ant Eater, Princess and Frog, the unreleased/finished game Nitro, and a chess game, at GitHub.

AtariMania's list of Ed Fries' games

2015 Atari Compendium Interview

Ed's Blog

Ed on Twitter

This interview at Youtube

ANTIC Interview 76 - Tim McGuinness, founder of Romox

The Paper Computer Unfolded

Sea Chase source code

Ant Eater source code

Princess and Frog source code

Nitro source code

Chess source code

 


The First Macintosh Clone (1989)

    Mac Folklore Radio 4/1/2021

Steven Levy on a little-known Macintosh clone project from 1989. Original text from Macworld Magazine, April 1989.

Our sponsor for April 1st: The Mac Zone!


- Treasure Island Defence; Interview w/ Turbo9 team; CoCo Pixart w/ Google Sheets

    The CoCo Crew Podcast 3/31/2021

Episode 70 Show Notes -- http://cococrew.org/cococrew-podcast-70.html


Before the iPhone Was Apple's Digital Hub Strategy

    The History of Computing 3/29/2021

Steve Jobs returned to Apple in 1996. At the time, most people had a digital camera, like the Canon Elph that was released that year and maybe a digital video camera and probably a computer and about 16% of Americans had a cell phone at the time. Some had a voice recorder, a Diskman, some in the audio world had a four track machine. Many had CD players and maybe even a laser disk player. 

But all of this was changing. Small, cheap microprocessors were leading to more and more digital products. The MP3 was starting to trickle around after being patented in the US that year. Netflix would be founded the next year, as DVDs started to spring up around the world. Ricoh, Polaroid, Sony, and most other electronics makers released digital video cameras. There were early e-readers, personal digital assistants, and even research into digital video recorders that could record your favorite shows so you could watch them when you wanted. In other words we were just waking up to a new, digital lifestyle. But the industries were fragmented. 

Jobs and the team continued the work begun under Gil Amelio to reduce the number of products down from 350 to about a dozen. They made products that were pretty and functional and revitalized Apple. But there was a strategy that had been coming together in their minds and it centered around digital media and the digital lifestyle. We take this for granted today, but mostly because Apple made it ubiquitous. 

Apple saw the iMac as the centerpiece for a whole new strategy. But all this new type of media and the massive files needed a fast bus to carry all those bits. That had been created back in 1986 and slowly improved on one the next few years in the form of IEEE 1394, or Firewire. Apple started it - Toshiba, Sony, Panasonic, Hitachi, and others helped bring it to device they made. Firewire could connect 63 peripherals at 100 megabits, later increased to 200 and then 400 before increasing to 3200. Plenty fast enough to transfer those videos, songs, and whatever else we wanted.

iMovie was the first of the applications that fit into the digital hub strategy. It was originally released in 1999 for the iMac DV, the first iMac to come with built-in firewire. I’d worked on Avid and SGI machines dedicated to video editing at the time but this was the first time I felt like I was actually able to edit video. It was simple, could import video straight from the camera, allow me to drag clips into a timeline and then add some rudimentary effects. Simple, clean, and with a product that looked cool. And here’s the thing, within a year Apple made it free. One catch. You needed a Mac.

This whole Digital Hub Strategy idea was coming together. Now as Steve Jobs would point out in a presentation about the Digital Hub Strategy at Macworld 2001, up to that point, personal computers had mainly been about productivity. Automating first the tasks of scientists, then with the advent of the spreadsheet and databases, moving into automating business and personal functions. A common theme in this podcast is that what drives computing is productivity, telemetry, and quality of life. The telemetry gains came with connecting humanity through the rise of the internet in the later 1990s. But these new digital devices were what was going to improve our quality of life. And for anyone that could get their hands on an iMac they were now doing so. But it still felt like a little bit of a closed ecosystem. 

Apple released a tool for making DVDs in 2001 for the Mac G4, which came with a SuperDrive, or Apple’s version of an optical drive that could read and write CDs and DVDs. iDVD gave us the ability to add menus, slideshows (later easily imported as Keynote presentations when that was released in 2003), images as backgrounds, and more. Now we could take those videos we made and make DVDs that we could pop into our DVD player and watch. Families all over the world could make their vacation look a little less like a bunch of kids fighting and a lot more like bliss. And for anyone that needed more, Apple had DVD Studio Pro - which many a film studio used to make the menus for movies for years.

They knew video was going to be a thing because going back to the 90s, Jobs had tried to get Adobe to release Premiere for the iMac. But they’d turned him down, something he’d never forget. Instead, Jobs was able to sway Randy Ubillos to bring a product that a Macromedia board member had convinced him to work on called Key Grip, which they’d renamed to Final Cut. Apple acquired the source code and development team and released it as Final Cut Pro in 1999. And iMovie for the consumer and Final Cut Pro for the professional turned out to be a home run. But another piece of the puzzle was coming together at about the same time.

Jeff Robbin, Bill Kincaid, and Dave Heller built a tool called SoundJam in 1998. They had worked on the failed Copeland project to build a new OS at Apple and afterwards, Robbin made a great old tool (that we might need again with the way extensions are going) called Conflict Catcher while Kincaid worked on the drivers for a MP3 player called the Diamond Rio. He saw these cool new MP3 things and tools like Winamp, which had been released in 1997, so decided to meet back up with Robbin for a new tool, which they called SoundJam and sold for $50. 

Just so happens that I’ve never met anyone at Apple that didn’t love music. Going back to Jobs and Wozniak. So of course they would want to do something in digital music. So in 2000, Apple acquired SoundJam and the team immediately got to work stripping out features that were unnecessary. They wanted a simple aesthetic. iMovie-esque, brushed metal, easy to use. That product was released in 2001 as iTunes.

iTunes didn’t change the way we consumed music.That revolution was already underway.  And that team didn’t just add brushed metal to the rest of the operating system. It had begun with QuickTime in 1991 but it was iTunes through SoundJam that had sparked brushed metal. 

SoundJam gave the Mac music visualizers as well. You know, those visuals on the screen that were generated by sound waves from music we were listening to. And while we didn’t know it yet, would be the end of software coming in physical boxes. But something else big. There was another device coming in the digital hub strategy. iTunes became the de facto tool used to manage what songs would go on the iPod, released in 2001 as well. That’s worthy of its own episode which we’ll do soon. 

You see, another aspect about SoundJam is that users could rip music off of CDs and into MP3s. The deep engineering work done to get the codec into the system survives here and there in the form of codecs accessible using APIs in the OS. And when combined with spotlight to find music it all became more powerful to build playlists, embed metadata, and listen more insightfully to growing music libraries. But Apple didn’t want to just allow people to rip, find, sort, and listen to music. They also wanted to enable users to create music. So in 2002, Apple also acquired a company called Emagic. Emagic would become Logic Pro and Gerhard Lengeling would in 2004 release a much simpler audio engineering tool called Garage Band. 

Digital video and video cameras were one thing. But cheap digital point and shoot cameras were everwhere all of a sudden. iPhoto was the next tool in the strategy, dropping in 2002 Here, we got a tool that could import all those photos from our cameras into a single library. Now called Photos, Apple gave us a taste of the machine learning to come by automatically finding faces in photos so we could easily make albums. Special services popped up to print books of our favorite photos. At the time most cameras had their own software to manage photos that had been developed as an after-thought. iPhoto was easy, worked with most cameras, and was very much not an after-thought. 

Keynote came in 2003, making it easy to drop photos into a presentation and maybe even iDVD. Anyone who has seen a Steve Jobs presentation understands why Keynote had to happen and if you look at the difference between many a Power Point and Keynote presentation it makes sense why it’s in a way a bridge between the making work better and doing so in ways we made home better. 

That was the same year that Apple released the iTunes Music Store. This seemed like the final step in a move to get songs onto devices. Here, Jobs worked with music company executives to be able to sell music through iTunes - a strategy that would evolve over time to include podcasts, which the moves effectively created, news, and even apps - as explored on the episode on the App Store. And ushering in an era of creative single-purpose apps that drove down the cost and made so much functionality approachable for so many. 

iTunes, iPhoto, and iMovie were made to live together in a consumer ecosystem. So in 2003, Apple reached that point in the digital hub strategy where they were able to take our digital life and wrap them up in a pretty bow. They called that product iLife - which was more a bundle of these services, along with iDVD and Garage Band. Now these apps are free but at the time the bundle would set you back a nice, easy, approachable $49. 

All this content creation from the consumer to the prosumer to the professional workgroup meant we needed more and more storage. According to the codec, we could be running at hundreds of megabytes per second of content. So Apple licensed the StorNext File System in 2004 to rescue a company called ADIC and release a 64-bit clustered file system over fibre channel. Suddenly all that new high end creative content could be shared in larger and larger environments. We could finally have someone cutting a movie in Final Cut then hand it off to someone else to cut without unplugging a firewire drive to do it. Professional workflows in a pure-Apple ecosystem were a thing. 

Now you just needed a way to distribute all this content. So iWeb in 2004, which allowed us to build websites quickly and bring all this creative content in. Sites could be hosted on MobileMe or files uploaded to a web host via FTP. Apple had dabbled in web services since the 80s with AppleLink then eWorld then iTools, .Mac, and MobileMe, the culmination of the evolutions of these services now referred to as iCloud. 

And iCloud now syncs documents and more. Pages came in 2005, Numbers came in 2007, and they were bundled with Keynote to become Apple iWork, allowing for a competitor of sorts to Microsoft Office. Later made free and ported to iOS as well. iCloud is a half-hearted attempt at keeping these synchronized between all of our devices. 

Apple had been attacking the creative space from the bottom with the tools in iLife but at the top as well. Competing with tools like Avid’s Media Composer, which had been around for the Mac going back to 1989, Apple bundled the professional video products into a single suite called Final Cut Studio. Here, Final Cut Pro, Motion, DVD Studio Pro, Soundtrack Pro, Color (obtained when Apple acquired SiliconColor and renamed it from FinalTouch), Compressor, Cinema Tools, and Qmaster for distributing the processing power for the above tools came in one big old box. iMovie and Garage Band for the consumer market and Final Cut Studio and Logic for the prosumer to professional market. And suddenly I was running around the world deploying Xsan’s into video shops, corporate taking head editing studios, and ad agencies

Another place where this happened was with photos. Aperture was released in 2005 and  offered the professional photographer tools to manage their large collection of images. And that represented the final pieces of the strategy. It continued to evolve and get better over the years. But this was one of the last aspects of the Digital Hub Strategy. 

Because there was a new strategy underway. That’s the year Apple began the development of the iPhone. And this represents a shift in the strategy. Released in 2007, then followed up with the first iPad in 2010, we saw a shift from the growth of new products in the digital hub strategy to migrating them to the mobile platforms, making them stand-alone apps that could be sold on App Stores, integrated with iCloud, and killing off those that appealed to more specific needs in higher-end creative environments, like Aperture, which went ended in 2014, and integrating some into other products, like Color becoming a part of Final Cut Pro. But the income from those products has now been eclipsed by mobile devices. Because when we see the returns from one strategy begin to crest - you know, like when the entire creative industry loves you, it’s time to move to another, bolder strategy. And that mobile strategy opened our eyes to always online (or frequently online) synchronization between products and integration with products, like we get with Handoff and other technologies today. 

In 2009 Apple acquired a company called Lala, which would later be added to iCloud - but the impact to the Digital Hub Strategy was that it paved the way for iTunes Match, a  cloud service that allowed for syncing music from a local library to other Apple devices. It was a subscription and more of a stop-gap for moving people to a subscription to license music than a lasting stand-alone product. And other acquisitions would come over time and get woven in, such as Redmatia, Beats, and Swell. 

Steve Jobs said exactly what Apple was going to do in 2001. In one of the most impressive implementations of a strategy, Apple had slowly introduced quality products that tactically ushered in a digital lifestyle since the late 90s and over the next few years. iMovie, iPhoto, iTunes, iDVD, iLife, and in a sign of the changing times - iPod, iPhone, iCloud. To signal the end of that era because it was by then ubiquitous. - then came the iPad. And the professional apps won over the creative industries. Until the strategy had been played out and Apple began laying the groundwork for the next strategy in 2005. 

That mobile revolution was built in part on the creative influences of Apple. Tools that came after, like Instagram, made it even easier to take great photos, connect with friends in a way iWeb couldn’t - because we got to the point where “there’s an app for that”. And as the tools weren’t needed, Apple cancelled some one-by-one, or even let Adobe Premiere eclipse Final Cut in many ways. Because you know, sales of the iMac DV were enough to warrant building the product on the Apple platform and eventually Adobe decided to do that. Apple built many of these because there was a need and there weren’t great alternatives. Once there were great alternatives, Apple let those limited quantities of software engineers go work on other things they needed done. Like building frameworks to enable a new generation of engineers to build amazing tools for the platform!

I’ve always considered the release of the iPad to be the end of era where Apple was introducing more and more software. From the increased services on the server platform to tools that do anything and everything. But 2010 is just when we could notice what Jobs was doing. In fact, looking at it, we can easily see that the strategy shifted about 5 years before that. Because Apple was busy ushering in the next revolution in computing. 

So think about this. Take an Apple, a Microsoft, or a Google. The developers of nearly every single operating system we use today. What changes did they put in place 5 years ago that are just coming to fruition today. While the product lifecycles are annual releases now, that doesn’t mean that when they have billions of devices out there that the strategies don’t unfold much, much slower. You see, by peering into the evolutions over the past few years, we can see where they’re taking computing in the next few years. Who did they acquire? What products will they release? What gaps does that create? How can we take those gaps and build products that get in front of them? This is where magic happens. Not when we’re too early like a General Magic was. But when we’re right on time. Unless we help set strategy upstream. Or, is it all chaos and not in the least bit predictable? Feel free to send me your thoughts!

And thank you…


The Bill Kendrick Show

    ANTIC The Atari 8-bit Podcast 3/28/2021

ANTIC Episode 76 - The Bill Kendrick Show

In this episode of ANTIC The Atari 8-Bit Computer Podcast… Bill Kendrick gets more mentions than when he’s on the show, Kay discovers he owns more Atari disk drives than the rest of the Atari community combined, and we discuss all the news rocking the Atari 8-bit world.

READY!

Recurring Links 

Floppy Days Podcast 

AtariArchives.org 

AtariMagazines.com 

Kevin’s Book “Terrible Nerd” 

New Atari books scans at archive.org 

ANTIC feedback at AtariAge 

Atari interview discussion thread on AtariAge 

Interview index: here 

ANTIC Facebook Page 

AHCS 

Eaten By a Grue 

Next Without For 

What We’ve Been Up To

News 

Shows

YouTube videos this month

New at Archive.org

Commercial

New at Github 

Listener Feedback 

Closing


It was the plug-in the whole time?

    RetroMacCast 3/28/2021

James and John discuss eBay Finds: Original Mac Picasso box, Powerbook Duo 230 plus DuoDock, and Blue Dalmatian iMac. James recovers photos from an old Olympus digital camera, and news includes iMac Pro discontinued, classic icons on your iPhone, and Justin gets real.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 408 - David Maynard, Electronic Arts Worms?

    ANTIC The Atari 8-bit Podcast 3/27/2021

ANTIC Interview 408 - David Maynard, Electronic Arts Worms?

David Maynard created the game/simulation "Worms?" Published by Electronic Arts in 1983, it was a launch title -- one of the five initial releases from the company. David, one of EA's first employees, wrote Worms? for the Atari 8-bit in FORTH. It was later ported to the Commodore 64.

Worms is an interactive version of Paterson's Worms, a family of cellular automata devised in 1971 by Mike Paterson and John Conway. It is an unusual program, in which the player teaches wormlike creatures how to move on a hexagonal grid -- what direction to move in various situations. The worm's goal is to to grow and survive, and to capture more space on the grid than its competitors. Up to four worms could play simultaneously, with any combination of human- and computer-controlled worms.

But the program's manual didn't tell you all that straight off. In fact, here's the first thing you saw after opening the package: "You will find detailed instructions enclosed. Do not read them. Instead, sit down and get started. Don't ask how. Just start. You know how these things work... Resist them. Do not read them for a very long time. In fact, do not read them until you know how the game works... Then never read the instructions. Innocence is bliss."

David also collaborated on Cut & Paste, a word processor published by Electronic Arts in 1984.

After our interview, David sent me a binder of Worms? development documentation and source code for Atari 8-bit and Commodore 64, all of which I have scanned and are available at Internet Archive and GitHub. The originals are going to the Strong Museum of Play, at David's request.

This interview took place on March 4, 2021.

Worms? source code for Atari 8-bit and Commodore 64

Scans of printed Worms? source code

Worms? Development Notes

David's blog

Worms? at AtariMania

Michael Beeler's original Paterson's Worms paper

Martin Gardner's article in Scientific American

Darworms, Javascript version of Worms?

Darworms instructions and explanation

More Paterson's worm math

EA We See Farther poster 

This interview at YouTube 


Arthur: The Quest for Excalibur

    Eaten By A Grue: Infocom, Text Adventures, and Interactive Fiction 3/26/2021

Can Kay and Carrington defeat the usurper king and restore peace to a fabled land? And more importantly, can they do it while turning into badgers and turtles and eels, oh my. Some claim there is more to being a knight than just eating ham and jam and Spam a lot. Surely you joust.


THE SOURCE

    Advent of Computing 3/21/2021

One of the great things about the modern Internet is the wide range of services and content available on it. You have news, email, games, even podcasts. And in each category you have a wide range of choices. This wide diversity makes the Internet so compelling and fun to explore. But what happens when you take away that freedom of choice? What would a network look like if there was only one news site, or one place to get eamil? Look no further than THE SOURCE. Formed in 1979 and marketed as the information utility for the information age, THE SOURCE looked remarkably like the Internet in a more closed-off format. The key word here is: looked.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Is that your hand?

    RetroMacCast 3/21/2021

James and John discuss eBay Finds: TAM Experience CDROM, original iMac, and an oddly configured Macintosh SE. Mark and Frank join to discuss the MacEffects Apple //e keyboard Kickstarter and an upcoming project, and news includes HomePod discontinued, obscure Apple products, and startup sound history.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 407 - Guy Nouri, Interactive Picture Systems

    ANTIC The Atari 8-bit Podcast 3/20/2021

Guy Nouri, Interactive Picture Systems

Guy Nouri was co-founder of Interactive Picture Systems, a company that created software for 8-bit computers from 1982 through 1984. The company's first program was PAINT! for the Atari 8-bits, which was developed at the Superboots software development lab located at the Capital Children's Museum in Washington, D.C.. Its next program was Movie Maker, an animation program. Next came three educational titles for the Atari: Trains, a business simulation; Grandma's House, a sort of digital dollhouse; and Aerobics, a fitness program. The company also created Operation Frog, virtual dissection software for the Apple II and Commodore 64; and First Draft, an outline processor that helped kids plan their writing.

This interview took place on March 7, 2021.

PAINT! manual

First Annual IPS Computer Film Show

PAINT! in K-Power magazine


Marchintosh

    RetroMacCast 3/14/2021

John and Ron discuss eBay Finds: original Mac, Thunderscan, and floppy gears .  Ron McAdams talks all things Marchintosh, and news includes and old retail Apple sign for auction and iMac colors

 

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


1-Bit Wallpaper

    RetroMacCast 3/14/2021

James and John discuss eBay Finds: Apple "Freedom of Expression" printer poster, Mac lot, and Tecmar serial hard drive.  John makes 1-bit wallpaper, and news includes Throwboy towels and a 3D-printed retro Mac enclosure.

 

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


ANTIC Interview 406 - Atari at the Science Fair: Michael Fripp, Silent E

    ANTIC The Atari 8-bit Podcast 3/13/2021

Atari at the Science Fair: Michael Fripp: Silent E

An article was published in the Daily Press newspaper of Newport News, Virginia on February 13 1985, titled "Best in Show at Science Fair: Computer program helps young readers conquer the 'silent e' challenge'.

Two years ago Michael Fripp wanted to make sure his younger brother didn't face a hard time learning how to deal with the "silent e" principle in reading lessons. Putting his own Atari computer to work, Michael developed a fun, educational computer program designed to teach then 6-year-old Daniel how to successfully pronounce words like "cap," "tub" and "man" when an "e" is added to each.

"I remember the trouble I had with 'silent e' and didn't want him to have that trouble," says 13-year-old Michael, an eighth grader at Queens Lake Intermediate School. "There are lots of math but few English programs for computers. I hope to bridge that gap."

Michael went on to expand the "silent e" program, complete with more detailed instruction and graphics, through his computer science class at school and entered it as an exhibit in the York County Science Fair. Michael's educational reading program — "Silent E: A Program for K-3" — was judged best in show.

"We were pleased and surprised a computer program was picked because usually the judges pick pure science," says Carolyn Gaertner, who teaches math and computer science at the intermediate school.

Michael's computer program involves a simple story outline about an earthling named Tim and his spaceship landing on the planet EOP which is ruled by the Silent E's. There, Tim learns how the Silent E's simply and quickly turn words such as "pan" into "pane" with the addition of their favorite letter...

He has copyrighted the program and hopes to market it commercially. More than 100 hours of work have gone into the project...

"Computers are like a fever; they grow on you," says the young man. "I try to do a lot of programming at home but homework really limits me."

The large photograph accompanying the article shows young Michael, replete with calculator watch, in front of an Apple II computer, not an Atari.

I talked with Dr. Fripp to hear all about his program.

This interview took place on February 28, 2021.

Intro song: Silent E by Tom Lehrer


The WELL, an Early Internet Community

    The History of Computing 3/12/2021

The Whole Earth ‘lectronic Link, or WELL, was started by Stewart Brand and Larry Brilliant in 1985, and is still available at well.com. We did an episode on Stewart Brand: Godfather of the Interwebs and he was a larger than life presence amongst many of the 1980s former hippies that were shaping our digital age. From his assistance producing The Mother Of All Demos to the Whole Earth Catalog inspiring Steve Jobs and many others to his work with Ted Nelson, there’s probably only a few degrees separating him from anyone else in computing. 

Larry Brilliant is another counter-culture hero. He did work as a medical professional for the World Health Organization to eradicate smallpox and came home to teach at the University of Michigan. The University of Michigan had been working on networked conferencing since the 70s when Bob Parnes wrote CONFER, which would be used at Wayne State where Brilliant got his MD. But CONFER was a bit of a resource hog.

PicoSpan was written by Marcus Watts in 1983. Pico is a small text editor in many a UNIX variant and network is network. Why small, well, modems that dialed into bulletin boards were pretty slow back then. 

Marcus worked at NETI, who then bought the rights for PicoSpan to take to market. So Brilliant was the chairman of NETI at the time and approached Brand about starting up a bulletin-board system (BBS). Brilliant proposed NETI would supply the gear and software and that Brand would use his, uh, brand - and Whole Earth following, to fill the ranks. Brand’s non-profit The Point Foundation would own half and NETI would own the other half. 

It became an early online community outside of academia, and an important part of the rise of the splinter-nets and a holdout to the Internet. For a time, at least. 

PicoSpan gave users conferences. These were similar to PLATO Notes files, where a user could create a conversation thread and people could respond. These were (and still are) linear and threaded conversations. Rather than call them Notes like PLATO did, PicSpan referred to them as “conferences” as “online conferencing” was a common term used to describe meeting online for discussions at the time. EIES had been around going back to the 1970s, so Brand had some ideas abut what an online community could be - having used it. Given the sharp drop in the cost of storage there was something new PicoSpan could give people: the posts could last forever. Keep in mind, the Mac still didn’t ship with a hard drive in 1984. But they were on the rise. 

And those bits that were preserved were manifested in words. Brand brought a simple mantra: You Own Your Own Words. This kept the hands of the organization clean and devoid of liability for what was said on The WELL - but also harkened back to an almost libertarian bent that many in technology had at the time. Part of me feels like libertarianism meant something different in that era. But that’s a digression. Whole Earth Review editor Art Kleiner flew up to Michigan to get the specifics drawn up. NETI’s investment had about a quarter million dollar cash value. Brand stayed home and came up with a name. The Whole Earth ‘lectronic Link, or WELL. 

The WELL was not the best technology, even at the time. The VAX was woefully underpowered for as many users as The WELL would grow to, and other services to dial into and have discussions were springing up. But it was one of the most influential of the time. And not because they recreated the extremely influential Whole Earth catalog in digital form like Brilliant wanted, which would have been similar to what Amazon reviews are like now probably. But instead, the draw was the people. 

The community was fostered first by Matthew McClure, the initial director who was a former typesetter for the Whole Earth Catalog. He’d spent 12 years on a commune called The Farm and was just getting back to society. They worked out that they needed to charge $8 a month and another couple bucks an hour to make minimal a profit. 

So McClure worked with NETI to get the Fax up and they created the first conference, General. Kevin Kelly from the Whole Earth Review and Brand would start discussions and Brand mentioned The WELL in some of his writings. A few people joined, and then a few more. 

Others from The Farm would join him. Cliff Figallo, known as Cliff, was user 19 and John Coate, who went by Tex, came in to run marketing. In those first few years they started to build up a base of users.

It started with hackers and journalists, who got free accounts. And from there great thinkers joined up. People like Tom Mandel from Stanford Research Institute, or SRI. He would go on to become the editor of Time Online. His partner Nana. Howard Rheingold, who would go on to write a book called The Virtual Community. And they attracted more. Especially Dead Heads, who helped spread the word across the country during the heyday of the Grateful Dead. 

Plenty of UNIX hackers also joined. After all, the community was finding a nexus in the Bay Area at the time. They added email in 1987 and it was one of those places you could get on at least one part of this whole new internet thing. And need help with your modem? There’s a conference for that. Need to talk about calling your birth mom who you’ve never met because you were adopted? There’s a conference for that as well. Want to talk sexuality with a minister? Yup, there’s a community for that. It was one of the first times that anyone could just reach out and talk to people. And the community that was forming also met in person from time to time at office parties, furthering the cohesion. 

We take Facebook groups, Slack channels, and message boards for granted today. We can be us or make up a whole new version of us. We can be anonymous and just there to stir up conflict like on 4Chan or we can network with people in our industry like on LinkedIn. We can chat real time, which is similar to the Send option on The WELL. Or we can post threaded responses to other comments. But the social norms and trends were proving as true then as now. Communities grow, they fragment, people create problems, people come, people go. And sometimes, as we grow, we inspire. 

Those early adopters of The WELL inspired Craig Newmark of Craigslist to the growing power of the Internet. And future developers of Apple. Hippies versus nerds but not really versus, but coming to terms with going from “computers are part of the military industrial complex keeping us down” philosophy to more of a free libertarian information superhighway that persisted for decades. The thought that the computer would set us free and connect the world into a new nation, as John Perry Barlow would sum up perfectly in “A Declaration of the Independence of Cyberspace”.

By 1990 people like Barlow could make a post on The WELL from Wyoming and have Mitch Kapor, the founder of Lotus, makers of Lotus 1-2-3 show up at his house after reading the post - and they could join forces with the 5th employee of Sun Microsystems and GNU Debugging Cypherpunk John Gilmore to found the Electronic Foundation. And as a sign of the times that’s the same year The WELL got fully connected to the Internet.

By 1991 they had grown to 5,000 subscribers. That was the year Bruce Katz bought NETI’s half of the well for $175,000. Katz had pioneered the casual shoe market, changing the name of his families shoe business to Rockport and selling it to Reebok for over $118 million. 

The WELL had posted a profit a couple of times but by and large was growing slower than competitors. Although I’m not sure any o the members cared about that. It was a smaller community than many others but they could meet in person and they seemed to congeal in ways that other communities didn’t. But they would keep increasing in size over the next few years. In that time Fig replaced himself with Maurice Weitman, or Mo - who had been the first person to sign up for the service. And Tex soon left as well. 

Tex would go to become an early webmaster of The Gate, the community from the San Francisco Chronicle. Fig joined AOL’s GNN and then became director of community at Salon.

But AOL. You see, AOL was founded in the same year. And by 1994 AOL was up to 1.25 million subscribers with over a million logging in every day. CompuServe, Prodigy, Genie, Dephi were on the rise as well. And The WELL had thousands of posts a day by then but was losing money and not growing like the others. But I think the users of the service were just fine with that. The WELL was still growing slowly and yet for many, it was too big. Some of those left. Some stayed. Other communities, like The River, fragmented off. By then, The Point Foundation wanted out so sold their half of The WELL to Katz for $750,000 - leaving Katz as the first full owner of The WELL. 

I mean, they were an influential community because of some of the members, sure, but more because the quality of the discussions. Academics, drugs, and deeply personal information. And they had always complained about figtex or whomever was in charge - you know, the counter-culture is always mad at “The Management.” But Katz was not one of them. He honestly seems to have tried to improve things - but it seems like everything he tried blew up in his face. 

So Katz further alienated the members and fired Mo and brought on Maria Wilhelm, but they still weren’t hitting that hyper-growth, with membership getting up to around 10,000 - but by then AOL was jumping from 5,000,000 to 10,000,000. But again, I’ve not found anyone who felt like The WELL should have been going down that same path. The subscribers at The WELL were looking for an experience of a completely different sort. By 1995 Gail Williams allowed users to create their own topics and the unruly bunch just kinda’ ruled themselves in a way. There was staff and drama and emotions and hurt feelings and outrage and love and kindness and, well, community.

By the late 90s, the buzz word at many a company were all about building communities, and there were indeed plenty of communities growing. But none like The WELL. And given that some of the founders of Salon had been users of The WELL, Salon bought The WELL in 1999 and just kinda’ let it fly under the radar. The influence continued with various journalists as members. 

The web came. And the members of The WELL continued their community. Award winning but a snapshot in time in a way. Living in an increasingly secluded corner of cyberspace, a term that first began life in a present tense on The WELL, if you got it, you got it.

In 2012, after trying to sell The WELL to another company, Salon finally sold The WELL to a group of members who had put together enough money to buy it. And The WELL moved into the current, more modern form of existence.

To quote the site:

Welcome to a gathering that’s like no other. The WELL, launched back in 1985 as the Whole Earth ‘Lectronic Link, continues to provide a cherished watering hole for articulate and playful thinkers from all walks of life.

For more about why conversation is so treasured on The WELL, and why members of the community banded together to buy the site in 2012, check out the story of The WELL.

If you like what you see, join us!

It sounds pretty inviting. And it’s member supported. Like National Public Radio kinda’. In what seems like an antiquated business model, it’s $15 per month to access the community. And make no mistake, it’s a community. 

You Own Your Own Words. If you pay to access a community, you don’t sign the ownership of your words away in a EULA. You don’t sign away rights to sell your data to advertisers along with having ads shown to you in increasing numbers in a hunt for ever more revenue. You own more than your words, you own your experience. You are sovereign. 

This episode doesn’t really have a lot of depth to it. Just as most online forums lack the kind of depth that could be found on the WELL. I am a child of a different generation, I suppose.

Through researching each episode of the podcast, I often read books, conduct interviews (a special thanks to Help A Reporter Out), lurk in conferences, and try to think about the connections, the evolution, and what the most important aspects of each are. There is a great little book from Katie Hafner called The Well: A Story Of Love, Death, & Real Life. I recommend it. There’s also Howard Rheingold’s The Virtual Community and John Seabrook’s Deeper: Adventures on the Net. Oh, and From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, And the Rise of Digital Utopianism from Fred Turner and Siberia by Douglas Rushkoff. At a minimum, I recommend reading Katie Hafner’s wired article and then her most excellent book!

Oh, and to hear about other ways the 60s Counterculture helped to shape the burgeoning technology industry, check out What the Dormouse Said by John Markoff. 

And The WELL comes up in nearly every book as one of the early commercial digital communities. It’s been written about in Wired, in The Atlantic, makes appearances in books like Broad Band by Claire Evans, and The Internet A Historical Encyclopedia. 

The business models out there to build and run  and grow a company have seemingly been reduced to a select few. Practically every online community has become free with advertising and data being the currency we parlay in exchange for a sense of engagement with others. 

As network effects set in and billionaires are created, others own our words. They think the lifestyle business is quaint - that if you aren’t outgrowing a market segment that you are shrinking. And a subscription site that charges a monthly access fee to cgi code with a user experience that predates the UX field on the outside might affirm that philosophy -especially since anyone can see your real name. But if we look deeper we see a far greater truth: that these barriers keep a small corner of cyberspace special - free from Russian troll farms and election stealing and spam bots. And without those distractions we find true engagement. We find real connections that go past the surface. We find depth. It’s not lost after all. 

Thank you for being part of this little community. We are so lucky to have you. Have a great day.


Tesla: From Startup To... Startup...

    The History of Computing 3/9/2021

Tesla

 

Most early stage startups have, and so seemingly need, heroic efforts from brilliant innovators working long hours to accomplish impossible goals. Tesla certainly had plenty of these as an early stage startup and continues to - as do the other Elon Musk startups. He seems to truly understand and embrace that early stage startup world and those around him seem to as well.

 

As a company grows we have to trade those sprints of heroic output for steady streams of ideas and quality. We have to put development on an assembly line. Toyota famously put the ideas of Deming and other post-World War II process experts into their production lines and reaped big rewards - becoming the top car manufacturer in the process. 

 

Not since the Ford Model T birthed the assembly line had auto makers seen as large an increase in productivity. And make no mistake, technology innovation is about productivity increases. We forget this sometimes when young, innovative startups come along claiming to disrupt industries. Many of those do, backed by seemingly endless amounts of cash to get them to the next level in growth. And the story of Tesla is as much about productivity in production as it is about innovative and disruptive ideas. And the story is as much about a cult of personality as it is about massive valuations and quality manufacturing. 

 

The reason we’re covering Tesla in a podcast about the history of computers is at the heart of it, it’s a story about the startup culture clashing head-on with decades-old know-how in an established industry. This happens with nearly every new company: there are new ideas, an organization is formed to support the new ideas, and as the organization grows, the innovators are forced to come to terms with the fact that they have greatly oversimplified the world. 

Tesla realized this. Just as Paypal had realized it before. But it took a long time to get there. The journey began much further back. Rather than start with the discovery of the battery or the electric motor, let’s start with the GM Impact. It was initially shown off at the 1990 LA Auto Show. It’s important because Alan Cocconi was able to help take some of what GM learned from the 1987 World Solar Challenge race using the Sunraycer and start putting it into a car that they could roll off the assembly lines in the thousands. 

They needed to do this because the California Air Resources Board, or CARB, was about to require fleets to go 2% zero-emission, or powered by something other than fossil fuels, by 1998 with rates increasing every few years after that. And suddenly there was a rush to develop electric vehicles. GM may have decided that the Impact, later called the EV1, proved that the electric car just wasn’t ready for prime time, but the R&D was accelerating faster than it ever had before then. 

That was the same year that NuvoMedia was purchased by Gemstar-TVGuide International for $187 million. They’d made the Rocket eBook e-reader. That’s important because the co-founders of that company were Martin Eberhard, a University of Illinois Champaign Urbana grad, and Marc Tarpenning.

Alan Cocconi was able to take what he’d learned and form a new company, called AC Propulsion. He was able to put together a talented group and they built a couple of different cars, including the tZero. Many of the ideas that went into the first Tesla car came from the tZero, and Eberhard and Tarpenning tried to get Tom Gage and Cocconi to take their tZero into production. The tZero was a sleek sportscar that began life powered by lead-acid batteries that could get from zero to 60 in just over four seconds and run for 80-100 miles. They used similar regenerative braking that can be found in the Prius (to oversimplify it) and the car took about an hour to charge. The cars were made by hand and cost about $80,000 each. They had other projects so couldn’t focus on trying to mass produce the car. As Tesla would learn later, that takes a long time, focus, and a quality manufacturing process. 

While we think of Elon Musk as synonymous with Tesla Motors, it didn’t start that way. Tesla Motors was started in 2003 by Eberhard, who would serve as Tesla’s first chief executive officer (CEO) and Tarpenning, who would become the first chief financial officer (CFO), when AC Propulsion declined to take that tZero to market. Funding for the company was obtained from Elon Musk and others, but they weren’t that involved at first. Other than the instigation and support. It was a small shop, with a mission - to develop an electric car that could be mass produced. 

The good folks at AC Propulsion gave Eberhard and Tarpenning test drives in the tZero, and even agreed to license their EV Power System and reductive charging patents. And so Tesla would develop a motor and work on their own power train so as not to rely on the patents from AC Propulsion over time. But the opening Eberhard saw was in those batteries. The idea was to power a car with battery packs made of lithium ion cells, similar to those used in laptops and of course the Rocket eBooks that NuvoMedia had made before they sold the company. They would need funding though. So Gage was kind enough to put them in touch with a guy who’d just made a boatload of money and had also recommended commercializing the car - Elon Musk. 

This guy Musk, he’d started a space company in 2002. Not many people do that. And they’d been trying to buy ICBMs in Russia and recruiting rocket scientists. Wild. But hey, everyone used PayPal, where he’d made his money. So cool. Especially since Eberhard and Tarpenning had their own successful exit.

Musk signed on to provide $6.5 million in the Tesla Series A and they brought in another $1m to bring it to $7.5 million. Musk became the chairman of the board and they expanded to include Ian Wright during the fundraising and J.B. Straubel in 2004. Those five are considered the founding team of Tesla. 

They got to work building up a team to build a high-end electric sports car. Why? Because that’s one part of the Secret Tesla Motors Master Plan. That’s the title of a blog post Musk wrote in 2006.  You see, they were going to build a high-end hundred thousand dollar plus car. But the goal was to develop mass market electric vehicles that anyone could afford. They unveiled the prototype in 2006, selling out the first hundred in three weeks.

Meanwhile, Elon Musk’s cousins, Peter and Lyndon Rive started a company called SolarCity in 2006, which Musk also funded. They merged with Tesla in 2016 to provide solar roofs and other solar options for Tesla cars and charging stations. SolarCity, as with Tesla, was able to capitalize on government subsidies and growing to become the third most solar installations in homes with just a little over 6 percent of the market share. 

But we’re still in 2006. You see, they won a bunch of awards, got a lot of attention - now it was time to switch to general production. They worked with Lotus, a maker of beautiful cars that make up for issues with quality production in status, beauty, and luxury. They started with the Lotus Elise, increased the wheelbase and bolstered the chassis so it could hold the weight of the batteries. And they used a carbon fiber composite for the body to bring the weight back down. 

The process was slower than it seems anyone thought it would be. Everyone was working long hours, and they were burning through cash. By 2007, Eberhard stepped down as CEO. Michael Marks came in to run the company and later that year Ze’ev Drori was made CEO - he has been given the credit by many for tighting things up so they could get to the point that they could ship the Roadster. Tarpenning left in 2008. As did others, but the brain drain didn’t seem all that bad as they were able to ship their first car in 2008, after ten engineering prototypes.

The Roadster finally shipped in 2008, with the first car going to Musk. It could go for 245 miles a charge. 0 to 60 in less than 4 seconds. A sleek design language. But it was over $100,000. They were in inspiration and there was a buzz everywhere. The showmanship of Musk paired with the beautiful cars and the elites that bought them drew a lot of attention. As did the $1 million in revenue profit they earned in July of 2009, off 109 cars shipped. 

But again, burning through cash. They sold 10% of the company to Daimler AG and took a $465 million loan from the US Department of Energy. They were now almost too big to fail. 

They hit 1,000 cars sold in early 2010. They opened up to orders in Canada. They were growing. But they were still burning through cash. It was time to raise some serious capital. So Elon Musk took over as CEO, cut a quarter of the staff, and Tesla filed for an IPO in 2010, raising over $200 million. But there was something special in that S-1 (as there often is when a company opens the books to go public): They would cease production of the Roadster making way for the next big product.

Tesla cancelled the Roadster in 2012. By then they’d sold just shy of 2,500 Roadsters and been thinking through and developing the next thing, which they’d shown a prototype of in 2011. The Model S started at $76,000 and went into production in 2012. It could go 300 miles, was a beautiful car, came with a flashy tablet-inspired 17 inch display screen on the inside to replace buttons. It was like driving an iPad. Every time I’ve seen another GPS since using the one in a Model S, I feel like I’ve gotten in a time machine and gone back a decade. 

But it had been announced in 2007to ship in 2009. And then the ship date dropped back to 2011 and 2012. Let’s call that optimism and scope creep. But Tesla has always eventually gotten there. Even if the price goes up. Such is the lifecycle of all technology. More features, more cost. There are multiple embedded Ubuntu operating systems controlling various parts of car, connected on a network in the car. It’s a modern marvel and Tesla was rewarded with tons of awards and, well, sales.

Charging a car that runs on batteries is a thing. So Tesla released the Superchargers in 2012, shipping 7 that year and growing slowly until now shipping over 2,500 per quarter. Musk took some hits because it took longer than anticipated to ship them, then to increase production, then to add solar. But at this point, many are solar and I keep seeing panels popping up above the cars to provide shade and offset other forms of powering the chargers. The more ubiquitous chargers become, the more accepting people will be of the cars.

Tesla needed to produce products faster. The Nevada Gigafactory was begun in 2013, to mass produce battery packs and components. Here’s one of the many reason for the high-flying valuation Tesla enjoys: it would take dozens if not a hundred factories like this to transition to sustanable energy sources. But it started with a co-investment between Tesla and Panasonic, with the two dumping billions into building a truly modern factory that’s now pumping out close tot he goal set back in 2014. As need increased, Gigafactories started to crop up with Gigafactory 5 being built to supposedly go into production in 2021 to build the Semi, Cybertruck (which should begin production in 2021) and Model Y. Musk first mentioned the truck in 2012 and projected a 2018 or 2019 start time for production. Close enough. 

Another aspect of all that software is that they can get updates over the air. Tesla released Autopilot in 2014. Similar to other attempts to slowly push towards self-driving cars, Autopilot requires the driver to stay alert, but can take on a lot of the driving - staying within the lines on the freeway, parking itself, traffic-aware cruise control, and navigation. But it’s still the early days for self-driving cars and while we make think that because the number of integrated circuits doubles every year that it paves the way to pretty much anything, no machine learning project I’ve ever seen has gone as fast as we want because it takes years to build the appropriate algorithms and then rethink industries based on the impact of those. But Tesla, Google through Waymo, and  many others have been working on it for a long time (hundreds of years in startup-land) and it continues to evolve.

By 2015, Tesla had sold over 100,000 cars in the life of the company. They released the Model X that year, also in 2015. This was their first chance to harness the power of the platform - which in the auto industry is when there are multiple cars of similar size and build. Franz von Holzhausen designed it and it is a beautiful car, with falcon-wing doors, up to a 370 mile range on the battery and again with the Autopilot. But harnessing the power of the platform was a challenge. You see, with a platform of cars you want most of the parts to be shared - the differences are often mostly cosmetic. But the Model X only shared a little less than a third of the parts of the Model S. 

But it’s yet another technological marvel, with All Wheel Drive as an option, that beautiful screen, and check this out - a towing capacity of 5,000 pounds - for an electric automobile!

By the end of 2016, they’d sold over 25,000. To a larger automaker that might seem like nothing, but they’d sell over 10,000 in every quarter after that. And it would also become the platform for a mini-bus. Because why not. So they’d gone lateral in the secret plan but it was time to get back at it. This is where the Model 3 comes in. 

The Model 3 was released in 2017 and is now the best-selling electric car in the history of the electric car. The Model 3 was first shown off in 2016 and within a week, Tesla had taken over 300,000 reservations. Everyone I talked to seemed to want in on an electric car that came in at $35,000. This was the secret plan. That $35,000 model wouldn’t be available until 2019 but they started cranking them out. Production was a challenge with Musk famously claiming Tesla was in “Production Hell” and sleeping on an air mattress at the factory to oversee the many bottlenecks that came. Musk thought they could introduce more robotics than they could and so they’ slowly increased production to first a few hundred per week then a few thousand until finally almost hitting that half a million mark in 2020.

This required buying Grohmann Engineering in 2017, now called Tesla Advanced Automation Germany - pumping billions into production. But Tesla added the Model Y in 2020, launching a crossover on the Model 3 platform, producing over 450,000 of them. And then of course they decided to the Tesla Semi, selling for between $150,000 and $200,000. And what’s better than a Supercharger to charge those things? A Megacharger. As is often the case with ambitious projects at Tesla, it didn’t ship in 2020 as projected but is now supposed to ship, um, later.

Tesla also changed their name from Tesla Motors to Tesla, Inc. And if you check out their website today, solar roofs and solar panels share the top bar with the Models S, 3, X, and Y. SolarCity and batteries, right?

Big money brings big attention. Some good. Some bad. Some warranted. Some not. Musk’s online and sometimes nerd-rockstar persona was one of the most valuable assets at Tesla - at least in the fundraising, stock pumping popularity contest that is the startup world. But on August 7, 2018, he tweeted “Am considering taking Tesla private at $420. Funding secured.” The SEC would sue him for that, causing him to step down as chairman for a time and limit his Twitter account. But hey, the stock jumped up for a bit. 

But Tesla kept keeping on, slowly improving things and finally hit about the half million cars per year mark in 2020. Producing cars has been about quality for a long time. And it needs to be with people zipping around as fast as we drive - especially on modern freeways. Small batches of cars are fairly straight-forward. Although I could never build one. 

The electric car is good for the environment, but the cost to offset carbon for Tesla is still far greater than, I don’t know, making a home more energy efficient. But the improvements in the technology continue to increase rapidly with all this money and focus being put on them. And the innovative designs that Tesla has deployed has inspired others, which often coincides with the rethinking of entire industries. 

But there are tons of other reasons to want electric cars. The average automobile manufactured these days has about 30,000 parts. Teslas have less than a third of that. One hopes that will some day be seen in faster and higher quality production. 

They managed to go from producing just over 18,000 cars in 2015 to over 26,000 in 2016 to over 50,000 in 2017 to the 190,000s in 2018 and 2019 to a whopping 293,000 in 2020. But they sold nearly 500,000 cars in 2020 and seem to be growing at a fantastic clip. Here’s the thing, though. Ford exceeded half a million cars in 1916. It took Henry Ford from 1901 to 1911 to get to producing 34,000 cars a year but only 5 more years to hit half a million. I read a lot of good and a lot of bad things about Tesla. Ford currently has a little over a 46 and a half billion dollar market cap. Tesla’s crested at nearly $850 billion and has since dropped to just shy of 600.

Around 64 million cars are sold each year. Volkswagen is the top, followed by Toyota. Combined, they are worth less than Tesla on paper despite selling over 20 times the number of cars. If Tesla was moving faster, that might make more sense. But here’s the thing. Tesla is about to get besieged by competitors at every side. Nearly every category of car has an electric alternative with Audi, BMW, Volvo, and Mercedes releasing cars at the higher ends and on multiple platforms. Other manufacturers are releasing cars to compete with the upper and lower tiers of each model Tesla has made available. And miniature cars, scooters, bikes, air taxis, and other modes of transportation are causing us to rethink the car. And multi-tenancy of automobiles using ride sharing apps and the potential that self driving cars can have on that are causing us to rethink automobile ownership. 

All of this will lead some to rethink that valuation Tesla enjoyed. But watching the moves Tesla makes and scratching my head over some certainly makes me think to never under, or over-estimate Tesla or Musk. I don’t want anything to do with Tesla Stock. Far too weird for me to grok. But I do wish them the best. I highly doubt the state of electric vehicles and the coming generational shifts in transportation in general would be where they are today if Tesla hadn’t done all the good and bad that they’ve done. They deserve a place in the history books when we start looking back at the massive shifts to come. In the meantime, I’l’ just call this episode part 1 and wait to see if Tesla matches Ford production levels some day, crashes and burns, gets acquired by another company, or who knows, packs up and heads to Mars. 


The IBM PC

    Advent of Computing 3/8/2021

Released in August 1981, the IBM PC is perhaps one of the most important computers in history. It originated the basic architecture computers still use today, it flung the doors open to a thriving clone market, and created an ad-hoc set of standards. The heart of the operation, Intel's 8088, solidified the x86 architecture as the computing platform of the future. IBM accomplished this runaway success by breaking all their own rules, heavily leveraging 3rd party hardware and software, and by cutting as many corners as possible. The PC was designed in less than a year, so how did it become the most enduring design in the industry?
 
Some ad clips this episode were from this fabulous PC ad compilation: https://www.youtube.com/watch?v=kQT_YCBb9ao
 
Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Duo Trouble (1993)

    Mac Folklore Radio 3/7/2021

Is it too late for Apple’s lightweight laptops? Steven Levy’s summary of the awkward PowerBook Duo situation.

Original text from Macworld Magazine, December 1993.

PowerBook Duo commercials courtesy of the RetroMacCast on YouTube (1, 2). Watch the Duo and Dock in action (insert, eject).

PowerBook Duo commercial in Swedish

Titanium PowerBook G4 introduction at Macworld San Francisco 2001

12-inch PowerBook G4 introduction at Macworld San Francisco 2003

MacBook Air introduction at Macworld San Francisco 2008


PayPal Was Just The Beginning

    The History of Computing 3/6/2021

We can look around at distributed banking, crypto-currencies, Special Purpose Acquisition Companies, and so many other innovative business strategies as new and exciting and innovative. And they are. But paving the way for them was simplifying online payments to what I’ve heard Elon Musk call just some rows in a database. 

Peter Thiel, Max Levchin, and former Netscaper Luke Nosek had this idea in 1998. Levchin and Nosek has worked together on a startup called SponsorNet New Media while at the University of Illinois Champagne-Urbana where PLATO and Mosaic had come out of. And SponsorNet was supposed to sell online banner ads but would instead be one of four failed startups before zeroing in on this new thing, where they would enable digital payments for businesses and make it simple for consumers to buy things online. They called the company Confinity and setup shop in beautiful Mountain View, California.

It was an era when a number of organizations were doing things in taking payments online that weren’t so great. Companies would cache credit card numbers on sites, many had weak security, and the rush to sell everything  in the bubble forming around dot-coms fueled a knack for speed over security, privacy, or even reliability. 

Confinity would store the private information in its own banking vaults, keep it secure, and provide access to vendors - taking a small charge per-transaction. Where large companies had been able to build systems to take online payments, now small businesses and emerging online stores could compete with the big boys. Thiel and Levchin had hit on something when they launched a service called PayPal, to provide a digital wallet and enable online transactions. They even accepted venture funding, taking $3 million from banks like Deutsche Bank over Palm Pilots. One of those funders was Nokia, investing in PayPal expanding into digital services for the growing mobile commerce market. And by 2000 they were up to 1,000,000 users. 

They saw an opening to make a purchase from a browser on a phone or a browser or app on a cell phone using one of those new smart phone ideas. And they were all rewarded with over 10 million people using the site in just three short years, processing a whopping $3 billion in transactions. 

Now this was the heart of the dot-com bubble. In that time, Elon Musk managed to sell his early startup Zip2, which made city guides on the early internet, to Compaq for around $300 million, pocketing $22 million for himself. He parlayed that payday into X.com, another online payment company. X.com exploded to over 200,000 customers quickly and as happens frequently with rapid acceleration, a young Musk found himself with a new boss - Bill Harris, the former CEO of Intuit. 

And they helped invent many of the ways we do business online at that time. One of my favorite of Levchin’s contributions to computing, the Gausebeck-Levchin test, is one of the earliest implementations of what we now call CAPTCHA - you know when you’re shown a series of letters and asked to type them in to eliminate bots. 

Harris helped the investors de-risk by merging with Confinity to form X.com. Peter Thiel and Elon Musk are larger than life minds in Silicon Valley. The two were substantially different. Musk took on the CEO role but Musk and Thiel were at heads. Thiel believed in a Linux ecosystem and Musk believed in a Windows ecosystem. Thiel wanted to focus on money transfers, similar to the PayPal of today. Given that those were just rows in a database, it was natural that that kind of business would become a red ocean and indeed today there are dozens of organizations focused on it. But Paypal remains the largest. So Musk also wanted to become a full online banking system - much more ambitious. Ultimately Thiel won and assumed the title of CEO. 

They remained a money transmitter and not a full bank. This means they keep funds that have been sent and not picked up, in an interest bearing account at a bank. 

They renamed the company to PayPal in 2001 and focused on taking the company public, with an IPO as PYPL in 2002. The stock shot up 50% in the first day of trading, closing at $20 per share. Yet another example of the survivors of the dot com bubble increasing the magnitude of valuations. By then, most eBay transactions accepted PayPal and seeing an opportunity, eBay acquired PayPal for $1.5 billion later in 2002. Suddenly PayPal was the default option for closed auctions and would continue their meteoric rise. Musk is widely reported to have made almost $200 million when eBay bought PayPal and Thiel is reported to have made over $50 million. 

Under eBay, PayPal would grow and as with most companies that IPO, see a red ocean form in their space. But they brought in people like Ken Howery, who serve as the VP of corporate development, would later cofound investment firm Founders Fund with Thiel, and then become the US Ambassador to Sweden under Trump. And he’s the first of what’s called the PayPal Mafia, a couple dozen extremely influential personalities in tech. 

By 2003, PayPal had become the largest payment processor for gambling websites. Yet they walked away from that business to avoid some of the complicated regulations until various countries that could verify a license for online gambling venues. 

In 2006 they added security keys and moved to sending codes to phones for a second factor of security validation. In 2008 they bought Fraud Sciences to gain access to better online risk management tools and Bill Me Later.

As the company grew, they setup a company in the UK and began doing business internationally. They moved their EU presence to Luxembourg 2007. They’ve often found themselves embroiled in politics, blocking the any political financing accounts, Alex Jones show InfoWars, and one of the more challenging for them, WikiLeaks in 2010. This led to them being attacked by members of Anonymous for a series of denial of service attacks that brought the PayPal site down.

OK, so that early CAPTCHA was just one way PayPal was keeping us secure. It turns out that moving money is complicated, even the $3 you paid for that special Golden Girls t-shirt you bought for a steal on eBay. For example, US States require reporting certain transactions, some countries require actual government approval to move money internationally, some require a data center in the country, like Turkey. So on a case-by-case basis PayPal has had to decide if it’s worth it to increase the complexity of the code and spend precious development cycles to support a given country. In some cases, they can step in and, for example, connect the Baidu wallet to PayPal merchants in support of connecting China to PayPal. 

They were spun back out of eBay in 2014 and acquired Xoom for $1 billion in 2015, iZettle for $2.2 billion, who also does point of sales systems. And surprisingly they bought online coupon aggregator Honey for $4B in 2019. But their best acquisition to many would be tiny app payment processor Venmo for $26 million. I say this because a friend claimed they prefer that to PayPal because they like the “little guy.”

Out of nowhere, just a little more than 20 years ago, the founders of PayPal and they and a number of their initial employees willed a now Fortune 500 company into existence. While they were growing, they had to learn about and understand so many capital markets and regulations. This sometimes showed them how they could better invest money. And many of those early employees went on to have substantial impacts in technology. That brain drain helped fuel the Web 2.0 companies that rose. 

One of the most substantial ways was with the investment activities. Thiel would go on to put $10 million of his money into Clarium Capital Management, a hedge fund, and Palantir, a big data AI company with a focus on the intelligence industry, who now has a $45 billion market cap. And he funded another organization who doesn’t at all use our big private data for anything, called Facebook. He put half a million into Facebook as an angel investor - an investment that has paid back billions. He’s also launched the Founders Fund, Valar Venture, and is a partner at Y Combinator, in capacities where he’s funded everyone from LinkedIn and Airbnb to Stripe to Yelp to Spotify, to SpaceX to Asana and the list goes on and on and on. 

Musk has helped take so many industries online. Why not just apply that startup modality to space - so launched SpaceX and to cars, so helped launch (and backed financially) Tesla and solar power, so launched Solar City and building tunnels so launched The Boring Company. He dabbles in Hyperloops (thus the need for tunnels) and OpenAI and well, whatever he wants. He’s even done cameos in movies like Iron Man. He’s certainly a personality. 

Max Levchin would remain the CTO and then co-found and become the CEO of Affirm, a public fintech company. 

David Sacks was the COO at PayPal and founded Yammer. Roelof Botha is the former CFO at PayPal who became a partner at Sequoia Capital, one of the top venture capital firms. Yishan Wong was an engineering manager at PayPal who became the CEO of Reddit.

Steve Chen left to join Facebook but hooked back up with Jawed Karim for a new project, who he studied computer science at the University of Illinois at Champaign-Urbana with. They were joined by Chad Hurley, who had created the original PayPal logo, to found YouTube. They sold it to Google for $1.65 billion in 2006. Hurley now owns part of the Golden State Warriors, the MLS Los Angeles team, and Leeds United.

Reid Hoffman was another COO at PayPal, who Thiel termed the “firefighter-in-chief” and left to found LinkedIn. After selling LinkedIn to Microsoft for over $26 billion he become a partner at venture capital firm, Greylock Partners. 

Jeremy Stoppelman and Russel Simmons co-founded Yelp with $1 million in funding from Max Levchin, taking the company public in 2011. And the list goes on.

PayPal paved the way for small transactions on the Internet. A playbook repeated in different parts of the sector by the likes of Square, Stripe, Dwolla, Due, and many others - including Apple Pay, Amazon Payments, and Google Wallet. We live in an era now, where practically every industry has been taken online. Heck, even cars. In the next episode we’ll look at just that, exploring the next steps in Elon Musk’s career after leaving PayPal. 


ANTIC Interview 405 - Heidi Brumbaugh, Antic Magazine

    ANTIC The Atari 8-bit Podcast 3/6/2021

Heidi Brumbaugh, Antic and START Magazines

Heidi Brumbaugh worked at Antic Publishing, where she started off as editorial clerk, then was promoted to editorial assistant, for both Antic magazine and START magazine, then was programs editor for START Magazine. She wrote many articles for Antic and START, including three programs for the 8-bits published in Antic: Red, White and Blue, a board game; Hot and Cold, a Master Mind-type game; and Antic Prompter, a teleprompter application.

She met her husband through Antic publishing, START author and programmer Jim Kent, who also created the Cyber Paint program for Atari ST.

This interview took place on February 28, 2021.

List of Antic articles by Heidi Brumbaugh

List of START articles by Heidi Brumbaugh

Heidi's programs at Atarimania

Heidi's review of Linkword Languages

Cyber Paint by Jim Kent

2013 Interview with Jim Capparell, Founder of Antic Magazine


Playing Games and E-Learning on PLATO: 1960 to 2015

    The History of Computing 3/2/2021

PLATO (Programmed Logic for Automatic Teaching Operations) was an educational computer system that began at the University of Illinois Champaign Urbana in 1960 and ran into the 2010s in various flavors. 

Wait, that’s an oversimplification. PLATO seemed to develop on an island in the corn fields of Champaign Illinois, and sometimes precedes, sometimes symbolizes, and sometimes fast-follows what was happening in computing around the world in those decades.

To put this in perspective - PLATO began on ILLIAC in 1960 - a large classic vacuum tube mainframe. Short for the Illinois Automatic Computer, ILLIAC was built in 1952, around 7 years after ENIAC was first put into production. As with many early mainframe projects PLATO 1 began in response to a military need. We were looking for new ways to educate the masses of veterans using the GI Bill. We had to stretch the reach of college campuses beyond their existing infrastructures.

Computerized testing started with mechanical computing, got digitized with the introduction of Scantron by IBM in 1935, and a number of researchers were looking to improve the consistency of education and bring in new technology to help with quality teaching at scale. The post-World War II boom did this for industry as well. Problem is, following the launch of Sputnik by the USSR in 1957, many felt the US began lagging behind in education. So grant money to explore solutions flowed and CERL was able to capitalize on grants from the US Army, Navy, and Air Force. By 1959, physicists at Illinois began thinking of using that big ILLIAC machine they had access to. Daniel Alpert recruited Don Bitzer to run a project, after false starts with educators around the campus.

Bitzer shipped the first instance of PLATO 1 in 1960. They used a television to show images, stored images in Raytheon tubes, and a make-shift keyboard designed for PLATO so users could provide input in interactive menus and navigate. They experimented with slide projectors when they realized the tubes weren’t all that reliable and figured out how to do rudimentary time sharing, expanding to a second concurrent terminal with the release of PLATO II in 1961.

Bitzer was a classic Midwestern tinkerer. He solicited help from local clubs, faculty, high school students, and wherever he could cut a corner to build more cool stuff, he was happy to move money and resources to other important parts of the system. This was the age of hackers and they hacked away. He inspired but also allowed people to follow their own passions. Innovation must be decentralized to succeed.

They created an organization to support PLATO in 1966 - as part of the Graduate College. CERL stands for the Computer-Based Education Research Laboratory (CERL). Based on early successes, they got more and more funding at CERL. Now that we were beyond a 1:1 ratio of users to computers and officially into Time Sharing - it was time for Plato III.

There were a number of enhancements in PLATO III. For starters, the system was moved to a CDC 1604 that CEO of Control Data William Norris donated to the cause - and expanded to allow for 20 terminals. But it was complicated to create new content and the team realized that content would be what drove adoption. This was true with applications during the personal computer revolution and then apps in the era of the App Store as well. One of many lessons learned first on PLATO. 

Content was in the form of applications that they referred to as lessons. It was a teaching environment, after all. They emulated the ILLIAC for existing content but needed more. People were compiling applications in a complicated language. Professors had day jobs and needed a simpler way to build content. So Paul Tenczar on the team came up with a language specifically tailored to creating lessons. Similar in some ways to BASIC, it was called TUTOR. 

Tenczar released the manual for TUTOR in 1969 and with an easier way of getting content out, there was an explosion in new lessons, and new features and ideas would flourish. We would see simulations, games, and courseware that would lead to a revolution in ideas. In a revolutionary time.

The number of hours logged by students and course authors steadily increased. The team became ever more ambitious. And they met that ambition with lots of impressive achievements.

Now that they were comfortable with the CDC 1604 they new that the new content needed more firepower. CERL negotiated a contract with Control Data Corporation (CDC) in 1970 to provide equipment and financial support for PLATO. Here they ended up with a CDC Cyber 6400 mainframe, which became the foundation of the next iteration of PLATO, PLATO IV.

PLATO IV  was a huge leap forward on many levels. They had TUTOR but with more resources could produce even more interactive content and capabilities. The terminals were expensive and not so scalable. So in preparation for potentially thousands of terminals in PLATO IV they decided to develop their own. 

This might seem a bit space age for the early 1970s, but what they developed was a touch flat panel plasma display. It was 512x512 and rendered 60 lines per second at 1260 baud. The plasma had memory in it, which was made possible by the fact that they weren’t converting digital signals to analog, as is done on CRTs. Instead, it was a fully digital experience. The flat panel used infrared to see where a user was touching, allowing users some of their first exposure to touch screens. This was a grid of 16 by 16 rather than 512 but that was more than enough to take them over the next decade.

The system could render basic bitmaps but some lessons needed more rich, what we might call today, multimedia. The Raytheon tubes used in previous systems proved to be more of a CRT technology but also had plenty of drawbacks. So for newer machines they also included a microfiche machine that produced images onto the back of the screen. 

The terminals were a leap forward. There were other programs going on at about the same time during the innovative bursts of PLATO, like the Dartmouth Time Sharing System, or DTSS, project that gave us BASIC instead of TUTOR. Some of these systems also had rudimentary forms of forums, such as EIES and the emerging BBS Usenet culture that began in 1973. But PLATO represented a unique look into the splintered networks of the Time Sharing age.

Combined with the innovative lessons and newfound collaborative capabilities the PLATO team was about to bring about something special. Or lots of somethings that culminated in more. One of those was Notes.

Talkomatic was created by Doug Brown and David R. Woolley in 1973. Tenczar asked the 17-year old Woolley to write a tool that would allow users to report bugs with the system. There was a notes file that people could just delete. So they added the ability for a user to automatically get tagged in another file when updating and store notes. He expanded it to allow for 63 responses per note and when opened, it showed the most recent notes. People came up with other features and so a menu was driven, providing access to System Announcements, Help Notes, and General Notes. 

But the notes were just the start. In 1973, seeing the need for even more ways to communicate with other people using the system, Doug Brown wrote a prototype for Talkomatic. Talkomatic was a chat program that showed when people were typing. Woolley helped Brown and they added channels with up to five people per channel. Others could watch the chat as well. It would be expanded and officially supported as a tool called Term-Talk. That was entered by using the TERM key on a console, which allowed for a conversation between two people. You could TERM, or chat a person, and then they could respond or mark themselves as busy. 

Because the people writing this stuff were also the ones supporting users, they added another feature, the ability to monitor another user, or view their screen. And so programmers, or consultants, could respond to help requests and help get even more lessons going. And some at PLATO were using ARPANET, so it was only a matter of time before word of Ray Tomlinson’s work on electronic mail leaked over, leading to the 1974 addition of personal notes, a way to send private mail engineered by Kim Mast.

As PLATO grew, the amount of content exploded. They added categories to Notes in 1975 which led to Group Notes in 1976, and comments and linked notes and the ability to control access.

But one of the most important innovations PLATO will be remembered for is games. Anyone that has played an educational game will note that school lessons and games aren’t always all that different. Since Rick Blomme had ported Spacewar! to PLATO in 1969 and added a two-player option, multi-player games had been on the rise. They made leader boards for games like Dogfight so players could get early forms of game rankings. Games like airtight and airace and Galactic Attack would follow those.

MUDs were another form of games that came to PLATO. Collosal Cave Adventure had come in 1975 for the PDP, so again these things were happening in a vacuum but where there were influences and where innovations were deterministic and found in isolation is hard to say. But the crawlers exploded on PLATO. We got Moria, Oubliette by Jim Schwaiger, Pedit5, crypt, dungeon, avatar, and drygulch. We saw the rise of intense storytelling, different game mechanics that were mostly inspired by Dungeons and Dragons, As PLATO terminals found their way in high schools and other universities, the amount of games and amount of time spent on those games exploded, with estimates of 20% of time on PLATO being spent playing games. 

PLATO IV would grow to support thousands of terminals around the world in the 1970s. It was a utility. Schools (and even some parents) leased lines back to Champagne Urbana and many in computing thought that these timesharing systems would become the basis for a utility model in computing, similar to the cloud model we have today. But we had to go into the era of the microcomputer to boomerang back to timesharing first. 

That microcomputer revolution would catch many, who didn’t see the correlation between Moore’s Law and the growing number of factories and standardization that would lead to microcomputers, off guard. Control Data had bet big on the mainframe market - and PLATO. CDC would sell mainframes to other schools to host their own PLATO instance. This is where it went from a timesharing system to a network of computers that did timesharing. Like a star topology. 

Control Data looked to PLATO as one form of what the future of the company would be. Here, he saw this mainframe with thousands of connections as a way to lease time on the computers. CDC took PLATO to market as CDC Plato. Here, schools and companies alike could benefit from distance education. And for awhile it seemed to be working. Financial companies and airlines bought systems and the commercialization was on the rise, with over a hundred PLATO systems in use as we made our way to the middle of the 1980s. Even government agencies like the Depart of Defense used them for training. But this just happened to coincide with the advent of the microcomputer.

CDC made their own terminals that were often built with the same components that would be found in microcomputers but failed to capitalize on that market. Corporations didn’t embrace the collaboration features and often had these turned off. Social computing would move to bulletin boards And CDC would release versions of PLATO as micro-PLATO for the TRS-80, Texas Instruments TI-99, and even Atari computers. But the bureaucracy at CDC had slowed things down to the point that they couldn’t capitalize on the rapidly evolving PC industry. And prices were too high in a time when home computers were just moving from a hobbyist market to the mainstream. 

The University of Illinois spun PLATO out into its own organization called University Communications, Inc (or UCI for short) and closed CERL in 1994. That was the same year Marc Andreessen co-founded Mosaic Communications Corporation, makers of Netscape -successor to NCSA Mosaic. Because NCSA, or The National Center for Supercomputing Applications, had also benefited from National Science Foundation grants when it was started in 1982. And all those students who flocked to the University of Illinois because of programs like PLATO had brought with them more expertise.

UCI continued PLATO as NovaNet, which was acquired by National Computer Systems and then Pearson corporation, finally getting shut down in 2015 - 55 years after those original days on ILLIAC. It evolved from the vacuum tube-driven mainframe in a research institute with one terminal to two terminals, to a transistorized mainframe with hundreds and then over a thousand terminals connected from research and educational institutions around the world. It represented new ideas in programming and programming languages and inspired generations of innovations. 

That aftermath includes:

  • The ideas. PLATO developers met with people from Xerox PARC starting in the 70s and inspired some of the work done at Xerox. Yes, they seemed isolated at times but they were far from it. They also cross-pollinated ideas to Control Data. One way they did this was by trading some commercialization rights for more mainframe hardware. 
  • One of the easiest connections to draw from PLATO to the modern era is how the notes files evolved. Ray Ozzie graduated from Illinois in 1979 and went to work for Data General and then Software Arts, makers of VisiCalc. The corporate world had nothing like the culture that had evolved out of the notes files in PLATO Notes. Today we take collaboration tools for granted but when Ozzie was recruited by Lotus, the makers of 1-2-3, he joined only if they agreed to him funding a project to take that collaborative spirit that still seemed stuck in the splintered PLATO network. The Internet and networked computing in companies was growing, and he knew he could improve on the notes files in a way that companies could take use of it. He started Iris Associates in 1984 and shipped a tool in 1989. That would evolve into what is would be called Lotus Notes when the company was acquired by Lotus in 1994 and then when Lotus was acquired by IBM, would evolve into Domino - surviving to today as HCL Domino. Ozzie would go on to become a CTO and then the Chief Software Architect at Microsoft, helping spearhead the Microsoft Azure project.
  • Collaboration. Those notes files were also some of the earliest newsgroups. But they went further. Talkomatic introduced real time text chats. The very concept of a digital community and its norms and boundaries were being tested and challenges we still face like discrimination even manifesting themselves then. But it was inspiring and between stints at Microsoft, Ray Ozzie founded Talko in 2012 based on what he learned in the 70s, working with Talkomatic. That company was acquired by Microsoft and some of the features ported into Skype. 
  • Another way Microsoft benefited from the work done on PLATO was with Microsoft Flight Simulator. That was originally written by Bruce Artwick after leaving the university based on the flight games he’d played on PLATO. 
  • Mordor: The Depths of Dejenol was cloned from Avatar
  • Silas Warner was connected to PLATO from terminals at the University of Indiana. During and after school, he wrote software for companies but wrote Robot War for PLATO and then co-founded Muse Software where he wrote Escape!, a precursor for lots of other maze runners, and then Castle Wolfenstein. The name would get bought for $5,000 after his company went bankrupt and one of the early block-buster first-person shooters when released as Wolfenstein 3D. Then John Carmack and John Romero created Doom. But Warner would go on to work with some of the best in gaming, including Sid Meier.  
  • Paul Alfille built the game Freecell for PLATO and Control Data released it for all PLATO systems. Jim Horne played it from the PLATO terminals at the University of Alberta and eventually released it for DOS in 1988. Horn went to work for Microsoft who included it in the Microsoft Entertainment Pack, making it one of the most popular software titles played on early versions of Windows. He got 10 shares of Microsoft stock in return and it’s still part of Windows 10 using the Microsoft Solitaire Collection..
  • Robert wood head and Andrew Greenberg got onto PLATO from their terminals at Cornell University where they were able to play games like Oubliette and Emprie. They would write a game called Wizardry that took some of the best that the dungeon crawl multi-players had to offer and bring them into a single player computer then console game. I spent countless hours playing Wizardry on the Nintendo NES and have played many of the spin-offs, which came as late as 2014. Not only did the game inspire generations of developers to write dungeon games, but some of the mechanics inspired features in the Ultima series, Dragon Quest, Might and Magic, The Bard’s Tale, Dragon Warrior and countless Manga. Greenberg would go on to help with Q-Bert and other games before going on to work with the IEEE. Woodhead would go on to work on other games like Star Maze. I met Woodhead shortly after he wrote Virex, an early anti-virus program for the Mac that would later become McAfee VirusScan for the Mac.
  • Paul Tenczar was in charge of the software developers for PLATO. After that he founded Computer Teaching Corporation and introduced EnCORE, which was changed to Tencore. They grew to 56 employees by 1990 and ran until 2000. He returned to the University of Illinois to put RFID tags on bees, contributing to computing for nearly 5 decades and counting. 
  • Michael Allen used PLATO at Ohio State University before looking to create a new language. He was hired at CDC where he became a director in charge of Research and Development for education systems There, he developed the ideas for a new computer language authoring system, which became Authorware, one of the most popular authoring packages for the Mac. That would merge with Macro-Mind to become Macromedia, where bits and pieces got put into Dreamweaver and Shockwave as they released those. After Adobe acquired Macromedia, he would write a number of books and create even more e-learning software authoring tools. 

 

So PLATO gave us multi-player games, new programming languages, instant messaging, online and multiple choice testing, collaboration forums, message boards, multiple person chat rooms, early rudimentary remote screen sharing, their own brand of plasma display and all the research behind printing circuits on glass for that, and early research into touch sensitive displays. And as we’ve shown in just a few of the many people that contributed to computing after, they helped inspire an early generation of programmers and innovators. 

If you like this episode I strongly suggest checking out The Friendly Orange Glow from Brian Dear. It’s a lovely work with just the right mix of dry history and flourishes of prose. A short history like this can’t hold a candle to a detailed anthology like Dear’s book. 

Another well researched telling of the story can be found in a couple of chapters of A People’s History Of Computing In The United States, from Joy Rankin. She does a great job drawing a parallel (and sometimes direct line from) the Dartmouth Time Sharing System and others as early networks. And yes, terminals dialing into a mainframe and using resources over telephone and leased lines was certainly a form of bridging infrastructures and seemed like a network at the time. But no mainframe could have scaled to the ability to become a utility in the sense that all of humanity could access what was hosted on it. 

Instead, the ARPANET was put online and growing from 1969 to 1990 and working out the hard scientific and engineering principals behind networking protocols gave us TCP/IP. In her book, Rankin makes great points about the BASIC and TUTOR applications helping shape more of our modern world in how they inspired the future of how we used personal devices once connected to a network. The scientists behind ARPANET, then NSFnet and the Internet, did the work to connect us. You see, those dial-up connections were expensive over long distances. By 1974 there were 47 computers connected to the ARPANET and by 1983 we had TCP/IPv4.And much like Bitzer allowing games, they didn’t seem to care too much how people would use the technology but wanted to build the foundation - a playground for whatever people wanted to build on top of it.

So the administrative and programming team at CERL deserve a lot of credit. The people who wrote the system, the generations who built features and code only to see it become obsolete came and went - but the compounding impact of their contributions can be felt across the technology landscape today. Some of that is people rediscovering work done at CERL, some is directly inspired, and some has been lost only to probably be rediscovered in the future.  One thing is for certain, their contributions to e-learning are unparalleled with any other system out there. And their technical contributions, both in the form of those patented and those that were either unpatentable or where they didn’t think of patenting, are immense. 

Bitzer and the first high schoolers and then graduate students across the world helped to shape the digital world we live in today. More from an almost sociological aspect than technical. And the deep thought applied to the system lives on today in so many aspects of our modern world. Sometimes that’s a straight line and others it’s dotted or curved. Looking around, most universities have licensing offices now, to capitalize on the research done. Check out a university near you and see what they have available for license. You might be surprised. As I’m sure many in Champagne were after all those years. Just because CDC couldn’t capitalize on some great research doesn’t mean we can’t. 


ANTIC Interview 404 - Atari at the Science Fair: Scott Ryder: Atari-Controlled Robot

    ANTIC The Atari 8-bit Podcast 2/28/2021

Atari at the Science Fair: Scott Ryder: Atari-Controlled Robot

Here's an article from The Fresno Bee (Fresno, California) dated April 15, 1982: "Science proves Fair game to young minds".

"Joseph Paul Ogas, 17, has designed a cheaper way to manipulate material beneath a microscope. Garey Nishimura, 13, has evaluated the relative flammability of several household fabrics. Theirs were the big winners among the 693 projects that filled the Fresno Convention Center Exhibit Hall for this year’s California Central Valley Science and Engineering Fair.

"There were other interesting projects that didn’t win big [such as]
'The Effects of Birth Control Pills on Plants,' and 'Determining the Correlation Between Canine Howling, Cockroach Activity and Earthquake Prediction'."

And later -- in the article's final paragraph, the reason for this interview: "Runners up [included] Scott Ryder, a sixth-grader at Ayer Elementary School: "Can an Atari 800 Control a Robot With Software?"

Can an Atari 800 control a robot with software? And if so, why did an awesome Atari-controlled robot only earn a runner-up award at the Science and Engineering Fair? I talked with Scott to find out.

This interview took place on February 21, 2021.


Video Wars

    ANTIC The Atari 8-bit Podcast 2/27/2021

ANTIC Episode 75 - Video Wars

In this episode of ANTIC The Atari 8-bit Computer Podcast… we discuss the merits of Sophia vs. VBXE for video upgrades, kick off the BASIC 10-liners contest, discuss some new games, and talk about numerous hardware upgrades that are coming.

READY!

Recurring Links 

Floppy Days Podcast 

AtariArchives.org 

AtariMagazines.com 

Kevin’s Book “Terrible Nerd” 

New Atari books scans at archive.org 

ANTIC feedback at AtariAge 

Atari interview discussion thread on AtariAge 

Interview index: here 

ANTIC Facebook Page 

AHCS 

Eaten By a Grue 

Next Without For 

What We’ve Been Up To

Recent Interviews 

News 

Shows

YouTube videos this month

New at Archive.org


- Review of Space Bandits; Interview w/ John Strong; Discussion: Do You Gotta Catch 'Em All?

    The CoCo Crew Podcast 2/27/2021

Episode 69 Show Notes -- http://cococrew.org/cococrew-podcast-69.html


So Long, Fry's Electronics

    The History of Computing 2/27/2021

We’ve covered Radioshack but there are a few other retail stores I’d like to cover as well. CompUSA, CircuitCity, and Fry’s to name a few. Not only is there something to be learned from the move from brick and mortar electronic chains to Ecommerce but there’s plenty to be learned about how to treat people and how people perceived computers and what we need and when, as well. 

You see, Fry’s was one of the few places you could walk in, pick a CPU, find a compatible mother board, pick a sweet chassis to put it in, get a power supply, a video card, some memory, back then probably a network card, maybe some sweet fans, a cooling system for the CPU you were about to overclock, an SSD drive to boot a machine, a hard drive to store stuff, a DVD, a floppy just in case, pick up some velcro wrap to keep the cables at bay, get a TV, a cheap knockoff smart watch, a VR headset that would never work, maybe a safe since you already have a cart, a soundbar ‘cause you did just get a TV, some headphones for when you’ll keep everyone else up with the sounder, a couple of resistors for that other project, a fixed frequency video card for that one SGI in the basement, a couple smart plugs, a solar backpack, and a CCNA book that you realize is actually 2 versions out of date when you go to take the test. Yup, that was a great trip. And ya’ there’s also a big bag of chips and a 32 ounce of some weird soda gonna’ go in the front seat with me. Sweet. Now let’s just toss the cheap flashlight we just bought into the glove box in case we ever break down and we’re good to go home and figure out how to pay for all this junk on that new Fry’s Credit Card we just opened. 

But that was then and this is now. Fry’s announced it was closing all of its stores on February 24th, 2021. The week we’re recording this episode. To quote the final their website:

“After nearly 36 years in business as the one-stop-shop and online resource for high-tech professionals across nine states and 31 stores, Fry’s Electronics, Inc. (“Fry’s” or “Company”), has made the difficult decision to shut down its operations and close its business permanently as a result of changes in the retail industry and the challenges posed by the Covid-19 pandemic. The Company will implement the shut down through an orderly wind down process that it believes will be in the best interests of the Company, its creditors, and other stakeholders.

The Company ceased regular operations and began the wind-down process on February 24, 2021. It is hoped that undertaking the wind-down through this orderly process will reduce costs, avoid additional liabilities, minimize the impact on our customers, vendors, landlords and associates, and maximize the value of the Company’s assets for its creditors and other stakeholders.”

Wow. Just wow. I used to live a couple of miles from a Fry’s and it was a major part of furthering my understanding of arcane, bizarre, sometimes emergent, and definitely dingy areas of computing. And if those adjectives don’t seem to have been included lovingly, they most certainly are. You see every trip to Fry’s was strange. 

Donald Fry founded Fry’s Food and Drug in 1954. The store rose to prominence in the 50s and 60s until his brother Charles Fry sold it off in 1972. As a part of Kroger it still exists today, with 22,000 employees. But this isn’t the story of a supermarket chain. I guess I did initially think the two were linked because the logos look somewhat similar - but that’s where their connection ends. 

Instead, let’s cover what happened to the $14 million the family got from the sale of the chain. Charles Fry gave some to his sons John, Randy, and David. They added Kathryn Kolder and leased a location in Sunnyvale, California to open the first Fry’s Electronics store in 1985.

This was during the rise of the microcomputer. The computing industry had all these new players who were selling boards and printers and floppy drives. They put all this stuff in bins kinda’ like you would in a grocery store and became a one-stop shop for the hobbyist and the professional alike. Unlike groceries, the parts didn’t expire so they were able to still have things selling 5 or 10 years later, albeit a bit dusty. 

1985 was the era when many bought integrated circuits, mother boards, and soldering irons and built their own computers. They saw the rise of the microprocessor, the 80286 and x86s. And as we moved into an era of predominantly x86 clones of the IBM PC, the buses and cards became standard. Provided a power supply had a molex connector it was probably good to light up most mother boards and hard drives. The IDE became the standard then later SATA. But parts were pretty interchangeable.

Knowing groceries, they also sold those. Get some Oranges and a microprocessor. They stopped selling those but always sold snacks until the day they closed down. But services were always a thing at Fry’s. Those who didn’t want to spend hours putting spacers on a motherboard and puttin

They also sold other electronics. Sometimes the selection seemed totally random. I bought my first MP3 player at a Fry’s - the Diamond Rio. And funny LED lights for computer fans before that really became a thing. Screwdriver kits, thermal grease, RAM chips, unsoldered boards, weird little toys, train sets, coloring books, certification books for that MCSE test I took in 2002, and whatever else I could think of. 

The stores were kitchy. Some had walls painted like circuit boards. Some had alien motifs. Others were decorated like the old west. It’s like whatever they could find weird stuff to adorn the joint. People were increasingly going online. In 1997 they bought Frys.com. To help people get online, they started selling Internet access in 2000. But by then there were so many vendors to help people get online that it wasn’t going to be successful. People were increasingly shopping online so they bought Cyberian Outpost in 2001 and moved it to outpost.com - which later just pointed to Frys.com. 

The closing of a number of Radio Shack stores and Circuit City and CompUSA seemed to give them a shot in the arm for a bit. But you could buy computers at Gateway Country or through Dell. Building your own computer was becoming more and more a niche industry for gamers and others who needed specific builds. 

They grew to 34 stores at their height. Northern California stores in Campbell, Concord, Fremont, Roseville, Sacramento, San Jose, and that original Sunnyvale (now across the street from the old original Sunnyvale) and Southern California stores in Burbank, City of Industry, Fountain Valley, Manhattan Beach, Oxnard, San Diego, San Marcos, and the little one in Woodland Hills  - it seemed like everyone in California knew to go to Fry’s when you needed some doodad. In fact, they made the documentary about General Magic because they were constantly going back and forth to Fry’s to get parts to build their device. 

But they did expand out of California with 8 stores in Texas, two in Airizona, one in Illinois, one in Indiana, one in Nevada, one in Oregon, and another in Washington. In some ways it looked as though they were about to have a chain that could rival the supermarket chain their dad helped build. But it wasn’t meant to be. 

With the fall of Radio Shack, CompUSA, and Circuit City, I was always surprised Fry’s stayed around. Tandy started a concept similar called Incredible Universe but that didn’t last too long. But I loved them. The customer service wasn’t great. The stores were always a little dirty. But I never left empty-handed. Even when I didn’t find what I was looking for. 

Generations of computer enthusiasts bought everything from scanners to printers at Frys. They were sued over how they advertised, for sexual harassment, during divorce settlements, and over how they labeled equipment. They lost money in embezzlements, and as people increasingly turned to Amazon and other online vendors for the best price for that MSI motherboard or a screen for the iPhone - keeping such a massive inventory was putting them out of business. So in 2019 amidst rumors they were about to go out of business, they moved to stocking the stores via consignment. Not all vendors upstream could do that, leading to an increasingly strange selection and finding what you needed less and less. 

Then came COVID. They closed a few stores and between the last ditch effort of consignment and empty bins as hardware moved, they just couldn’t do it any more. As with the flashier and less selection but more complete systems Circuit City and CompUSA before them, they finally closed their doors in 2021, after 36 years. And so we live in an era where many computers, tablets, and phones are no longer serviceable or have parts that can be swapped out. We live in an era where when we can service a device with those parts, we often go online to source them. And we live in an era where if we need instant gratification to replace components there are plenty of retail chains like Target or Walmart that sell components and move far more than Fry’s so are more competitive on the price. We live in an era where we don’t need to go into a retailer for software and books, both sold at high margins. There are stores on the Apple and Microsoft and Google platforms for that. And of course 2020 was a year that many retail chains had to close their doors in order to keep their employees safe, losing millions in revenue. 

All of that eventually became too much for other computer stores as each slowly eroded the business. And now it’s become too much for Fry’s. I will always remember the countless hours I strolled around the dingy store, palming this adapter and that cable and trying to figure out what components might fit together so I can get the equivalent of an AlienWare computer for half the cost. And I’ll even fondly remember the usually sub-par customer service, because it forced me to learn more. And I’ll always be thankful that they had crap sitting around for a decade because I always learned something new about the history of computers in their bins of arcane bits and bytes sitting around.

And their closing reminds us, as the closings of former competitors and even other stores like Borders does, that an incredible opportunity lies ahead of us. These shifts in society also shift the supply chain. They used to get a 50% markup on software and a hefty markup on the books I wrote. Now I can publish software on the App Stores and pay less of my royalties to the retailers. Now I don’t need a box and manual for software. Now books don’t have to be printed and can even be self-published in those venues if I see fit to do so. And while Microsoft, Apple, and Google’s “Services” revenue or revenue from Target once belonged to stores like Fry’s, the opportunities have moved to linking and aggregating and adding machine learning and looking to fields that haven’t yet been brought into a more digital age - or even to harkening back to simpler times and providing a more small town white glove approach to life. Just as the dot com crash created a field where companies like Netflix and Google could become early unicorns, so every other rise and fall creates new, uncharted green fields and blue oceans. Thank you for your contributions - both past and future.


8086: The Unexpected Future

    Advent of Computing 2/22/2021

The Intel 8086 may be the most important processor ever made. It's descendants are central to modern computing, while retaining an absurd level of backwards compatibility. For such an important chip it had an unexpected beginning. The 8086 was meant as a stopgap measure while Intel worked on bigger and better projects. This episode we are looking at how Intel was trying to modernize, how the 8086 fit into that larger plan, and it's pre-IBM life.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Three Cat Maximum

    RetroMacCast 2/21/2021

James and John discuss eBay Finds: MacEffects Mac Portable 8MB card, computer lot, and PowerBook 550c. John talks about a SCSI hard drive replacement, and news includes Action Retro Libretto Hackintosh, System 7 Today return, Lisa X Fusion X 360 Project, Floppy Emu update, and recreating a Mac SE logic board.

 

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Apple 1997-2011: The Return Of Steve Jobs

    The History of Computing 2/21/2021

Steve Jobs left Apple in 1985. He co-founded NeXT Computers and took Pixar public. He then returned to Apple as the interim CEO in 1997 at a salary of $1 per year. Some of the early accomplishments on his watch were started before he got there. But turning the company back around was squarely on him and his team. 

By the end of 1997, Apple moved to a build-to-order manufacturing powered by an online store built on WebObjects, the NeXT application server. They killed off a number of models, simplifying the lineup of products and also killed the clone deals, ending licensing of the operating system to other vendors who were at times building sub-par products.

And they were busy. You could feel the frenetic pace.  They were busy at work weaving the raw components from NeXT into an operating system that would be called Mac OS X. They announced a partnership that would see Microsoft invest $150 million into Apple to settle patent disputes but that Microsoft would get Internet Explorer bundled on the Mac and give a commitment to release Office for the Mac again. By then, Apple had $1.2 billion in cash reserves again, but armed with a streamlined company that was ready to move forward - but 1998 was a bottoming out of sorts, with Apple only doing just shy of $6 billion in revenue. To move forward, they took a little lesson from the past and released a new all-in-one computer. One that put the color back into that Apple logo. Or rather removed all the colors but Aqua blue from it. 

The return of Steve Jobs invigorated many, such as Johnny Ive who is reported to have had a resignation in his back pocket when he met Jobs. Their collaboration led to a number of innovations, with a furious pace starting with the iMac. The first iMacs were shaped like gumdrops and the color of candy as well. The original Bondi blue had commercials showing all the cords in a typical PC setup and then the new iMac, “as unPC as you can get.” The iMac was supposed to be to get on the Internet. But the ensuing upgrades allowed for far more than that. 

The iMac put style back into Apple and even computers. Subsequent releases came in candy colors like Lime, Strawberry, Blueberry, Grape, Tangerine, and later on Blue Dalmatian and Flower Power. The G3 chipset bled out into other more professional products like a blue and white G3 tower, which featured a slightly faster processor than the beige tower G3, but a much cooler look - and very easy to get into compared to any other machine on the market at the time. And the Clamshell laptops used the same design language. Playful, colorful, but mostly as fast as their traditional PowerBook counterparts. 

But the team had their eye on a new strategy entirely. Yes, people wanted to get online - but these computers could do so much more. Apple wanted to make the Mac the Digital Hub for content. This centered around a technology that had been codeveloped from Apple, Sony, Panasonic, and others called IEEE 1394. But that was kinda’ boring so we just called it Firewire.

Begun in 1986 and originally started by Apple, Firewire had become a port that was on most digital cameras at the time. USB wasn’t fast enough to load and unload a lot of newer content like audio and video from cameras to computers. But I can clearly remember that by the year 1999 we were all living as Jobs put it in a “new emerging digital lifestyle.”  This led to a number of releases from Apple. One was iMovie. Apple included it with the new iMac DV model for free. That model dumped the fan (which Jobs never liked even going back to the early days of Apple) as well as FireWire and the ability to add an AirPort card. Oh, and they released an AirPort base station in 1999 to help people get online easily. It is still one of the simplest router and wi-fi devices I’ve ever used. And was sleek with the new Graphite design language that would take Apple through for years on their professional devices.

iMovie was a single place to load all those digital videos and turn them into something else. And there was another format on the rise, MP3. Most everyone I’ve ever known at Apple love music. It’s in the DNA of the company, going back to Wozniak and Jobs and their love of musicians like Bob Dylan in the 1970s. The rise of the transistor radio and then the cassette and Walkman had opened our eyes to the democratization of what we could listen to as humans. But the MP3 format, which had been around since 1993, was on the rise. People were ripping and trading songs and Apple looked at a tool called Audion and another called SoundJam and decided that rather than Sherlock (or build that into the OS) that they would buy SoundJam in 2000. The new software, which they called iTunes, allowed users to rip and burn CDs easily. Apple then added iPhoto, iWeb, and iDVD. For photos, creating web sites, and making DVDs respectively. The digital hub was coming together.

But there was another very important part of that whole digital hub strategy. Now that we had music on our computers we needed something more portable to listen to that music on. There were MP3 players like the Diamond Rio out there, and there had been going back to the waning days of the Digital Equipment Research Lab - but they were either clunky or had poor design or just crappy and cheap. And mostly only held an album or two. I remember walking down that isle at Fry’s about once every other month waiting and hoping. But nothing good ever came. 

That is, until Jobs and the Apple hardware engineering lead Job Rubinstein found Tony Fadell. He had been at General Magic, you know, the company that ushered in mobility as an industry. And he’d built Windows CE mobile devices for Philips in the Velo and Nino. But when we got him working with Jobs, Rubinstein, and Johnny Ive on the industrial design front, we got one of the most iconic devices ever made: the iPod. 

And the iPod wasn’t all that different on the inside from a Newton. Blasphemy I know. It sported a pair of ARM chips and Ive harkened back to simpler times when he based the design on a transistor radio. Attention to detail and the lack thereof in the Sony Diskman propelled Apple to sell more than 400 million  iPods to this day. By the time the iPod was released in 2001, Apple revenues had jumped to just shy of $8 billion but dropped back down to $5.3. But everything was about to change. And part of that was that the iPod design language was about to leak out to the rest of the products with white iBooks, white Mac Minis, and other white devices as a design language of sorts. 

To sell all those iDevices, Apple embarked on a strategy that seemed crazy at the time. They opened retail stores. They hired Ron Johnson and opened two stores in 2001. They would grow to over 500 stores, and hit a billion in sales within three years. Johnson had been the VP of merchandising at Target and with the teams at Apple came up with the idea of taking payment without cash registers (after all you have an internet connected device you want to sell people) and the Genius Bar. 

And generations of devices came that led people back into the stores. The G4 came along - as did faster RAM. And while Apple was updating the classic Mac operating system, they were also hard at work preparing NeXT to go across the full line of computers. They had been working the bugs out in Rhapsody and then Mac OS X Server, but the client OS, Codenamed Kodiak, went into beta in 2000 and then was released as a dual-boot option in Cheetah, in 2001. And thus began a long line of big cats, going to Puma then Jaguar in 2002, Panther in 2003, Tiger in 2005, Leopard in 2007, Snow Leopard in 2009, Lion in 2011, Mountain Lion in 2012 before moving to the new naming scheme that uses famous places in California. 

Mac OS X finally provided a ground-up, modern, object-oriented operating system. They built the Aqua interface on top of it. Beautiful, modern, sleek. Even the backgrounds! The iMac would go from a gumdrop to a sleek flat panel on a metal stand, like a sunflower. Jobs and Ive are both named on the patents for this as well as many of the other inventions that came along in support of the rapid device rollouts of the day. 

Jaguar, or 10.2, would turn out to be a big update. They added Address Book, iChat - now called Messages, and after nearly two decades replaced the 8-bit Happy Mac with a grey Apple logo in 2002. Yet another sign they were no longer just a computer company. Some of these needed a server and storage so Apple released the Xserve in 2002 and the Xserve RAID in 2003. The pro devices also started to transition from the grey graphite look to brushed metal, which we still use today. 

Many wanted to step beyond just listening to music. There were expensive tools for creating music, like ProTools. And don’t get me wrong, you get what you pay for. It’s awesome. But democratizing the creation of media meant Apple wanted a piece of software to create digital audio - and released Garage Band in 2004. For this they again turned to an acquisition, EMagic, which had a tool called Logic Audio. I still use Logic to cut my podcasts. But with Garage Band they stripped it down to the essentials and released a tool that proved wildly popular, providing an on-ramp for many into the audio engineering space. 

Not every project worked out. Apple had ups and downs in revenue and sales in the early part of the millennium. The G4 Cube was released in 2000 and while it is hailed as one of the greatest designs by industrial designers it was discontinued in 2001 due to low sales. But Steve Jobs had been hard at work on something new. Those iPods that were becoming the cash cow at Apple and changing the world, turning people into white earbud-clad zombies spinning those click wheels were about to get an easier way to put media into iTunes and so on the device. 

The iTunes Store was released in 2003. Here, Jobs parlayed the success at Apple along with his own brand to twist the arms of executives from the big 5 record labels to finally allow digital music to be sold online. Each song was a dollar. Suddenly it was cheap enough that the music trading apps just couldn’t keep up. Today it seems like everyone just pays a streaming subscription but for a time, it gave a shot in the arm to music companies and gave us all this new-found expectation that we would always be able to have music that we wanted to hear on-demand. 

Apple revenue was back up to $8.25 billion in 2004. But Apple was just getting started. The next seven years would see that revenue climb from to $13.9 billion in 2005, $19.3 in 2006, $24 billion in 2007, $32.4 in 2008, $42.9 in 2009, $65.2 in 2010, and a staggering $108.2 in 2011.

After working with the PowerPC chipset, Apple transitioned new computers to Intel chips in 2005 and 2006. Keep in mind that most people used desktops at the time and just wanted fast. And it was the era where the Mac was really open source friendly so having the ability to load in the best the Linux and Unix worlds had to offer for software inside projects or on servers was made all the easier. But Intel could produce chips faster and were moving faster. That Intel transition also helped with what we call the “App Gap” where applications written for Windows could be virtualized for the Mac. This helped the Mac get much more adoption in businesses.

Again, the pace was frenetic. People had been almost begging Apple to release a phone for years. The Windows Mobile devices, the Blackberry, the flip phones, even the Palm Treo. They were all crap in Jobs’ mind. Even the Rockr that had iTunes in it was crap. So Apple released the iPhone in 2007 in a now-iconic  Jobs presentation. The early version didn’t have apps, but it was instantly one of the more saught-after gadgets. And in an era where people paid $100 to $200 for phones it changed the way we thought of the devices. In fact, the push notifications and app culture and always on fulfilled the General Magic dream that the Newton never could and truly moved us all into an always-on i (or Internet) culture.

The Apple TV was also released in 2007. I can still remember people talking about Apple releasing a television at the time. The same way they talk about Apple releasing a car. It wasn’t a television though, it was a small whitish box that resembled a Mac Mini - just with a different media-browsing type of Finder. Now it’s effectively an app to bootstrap the media apps on a Mac. 

It had been a blistering 10 years. We didn’t even get into Pages, FaceTime, They weren’t done just yet. The iPad was released in 2010. By then, Apple revenues exceeded those of Microsoft. The return and the comeback was truly complete. 

Similar technology used to build the Apple online store was also used to develop the iTunes Store and then the App Store in 2008. Here, rather than go to a site you might not trust and download an installer file with crazy levels of permissions.

One place where it’s still a work in progress to this day was iTools, released in 2000 and rebranded to .Mac or dot Mac in 2008, and now called MobileMe. Apple’s vision to sync all of our data between our myriad of devices wirelessly was a work in progress and never met the lofty goals set out. Some services, like Find My iPhone, work great. Others notsomuch. Jobs famously fired the team lead at one point. And while it’s better than it was it’s still not where it needs to be. 

Steve Jobs passed away in 2011 at 56 years old. His first act at Apple changed the world, ushering in first the personal computing revolution and then the graphical interface revolution. He left an Apple that meant something. He returned to a demoralized Apple and brought digital media, portable music players, the iPhone, the iPad, the Apple TV, the iMac, the online music store, the online App Store, and so much more. The world had changed in that time, so he left, well, one more thing. You see, when they started, privacy and security wasn’t much of a thing. Keep in mind, computers didn’t have hard drives. The early days of the Internet after his return was a fairly save I or Internet world. But by the time he passed away there there were some troubling trends. The data on our phones and computers could weave together nearly every bit of our life to an outsider. Not only could this lead to identity theft but with the growing advertising networks and machine learning capabilities, the consequences of privacy breaches on Apple products could be profound as a society. He left an ethos behind to build great products but not at the expense of those who buy them. One his successor Tim Cook has maintained. 

On the outside it may seem like the daunting 10 plus years of product releases has slowed. We still have the Macbook, the iMac, a tower, a mini, an iPhone, an iPad, an Apple TV. We now have HomeKit, a HomePod, new models of all those devices, Apple silicon, and some new headphones - but more importantly we’ve had to retreat a bit internally and direct some of those product development cycles to privacy, protecting users, shoring up the security model. Managing a vast portfolio of products in the largest company in the world means doing those things isn’t always altruistic. Big companies can mean big law suits when things go wrong. These will come up as we cover the history of the individual devices in greater detail.

The history of computing is full of stories of great innovators. Very few took a second act. Few, if any, had as impactful a first act as either that Steve Jobs had. It wasn’t just him in any of these. There are countless people from software developers to support representatives to product marketing gurus to the people that write the documentation. It was all of them, working with inspiring leadership and world class products that helped as much as any other organization in the history of computing, to shape the digital world we live in today. 


Ep. 26: Sep 1982: Deluxe Invaders

    Player/Missile 2/20/2021

Strap yourselves in for coverage of 11 magazine issues including a tiny bit on the large magazine Byte -- there’s an article on Star Raiders strategies that I can’t pass up. Game review is of Deluxe Invaders, which is a high quality Space Invaders clone. Oh, and there’s a discussion of a game called Hazard Run and its ties to a bad TV show and a worse flag.

Magazines

Creative Computing

... For 36 more links, see the show notes


From Moveable Type To The Keyboard

    The History of Computing 2/18/2021

QWERTY. It’s a funny word. Or not a word. But also not an acronym per se. Those are the  top six letters in a modern keyboard. Why? Because the frequency they’re used allows for hammers on a traditional typewriter to travel to and fro and the effort allows us to be more efficient with our time while typing. The concept of the keyboard goes back almost as far back as moveable type - but it took hundreds of years to standardize where we are today. 

Johannes Gutenberg is credited for developing the printing press in the 1450s. Printing using wooden blocks was brought to the Western world from China, which led him to replace the wood or clay characters with metal, thus giving us what we now think of as Moveable Type. This meant we were now arranging blocks of characters to print words onto paper. From there it was only a matter of time that we would realize that pressing a key could stamp a character onto paper as we went rather than developing a full page and then pressing ink to paper.

The first to get credit for pressing letters onto paper using a machine was Venetian Francesco Rampazzetto in 1575. But as with many innovations, this one needed to bounce around in the heads of inventors until the appropriate level of miniaturization and precision was ready. Henry Mill filed an English patent in 1714 for a machine that could type (or impress) letters progressively. By then, printed books were ubiquitous but we weren’t generating pages of printed text on the fly just yet. 

Others would develop similar devices but from 1801 to 1810, Pellegrino Turri in Italy developed carbon paper. Here, he coated one side of paper with carbon and the other side with wax. Why did he invent that, other than to give us an excuse to say carbon copy later (and thus the cc in an email)? 

Either he or Agostino Fantoni da Fivizzano invented a mechanical machine for pressing characters to paper for Countess Carolina Fantoni da Fivizzano, a blind friend of his. She would go on to send him letters written on the device, some of which exist to this day. More inventors tinkered with the idea of mechanical writing devices, often working in isolation from one another.

One was a surveyor, William Austin Burt. He found the handwritten documents of his field laborious and so gave us the typographer in 1829. Each letter was moved to where needed to print manually so it wasn’t all that much faster than the handwritten document, but the name would be hyphenated later to form type-writer. And with precision increasing and a lot of invention going on at the time there were other devices. But his patent was signed by Andrew Jackson. 

James Pratt introduced his Pterotype in an article in the Scientific American in 1867. It was a device that more closely resembles the keyboard layout we know today, with 4 rows of keys and a split in the middle for hands. Others saw the article and continued their own innovative additions. 

Frank Hall had worked on the telegraph before the Civil War and used his knowledge there to develop a Braille writer, which functioned similarly to a keyboard. He would move to Wisconsin, where he came in contact with another team developing a keyboard.

Christopher Latham Sholes saw the article in the Scientific American and along with Carlos Glidden and Samuel Soule out of Milwaukee developed the QWERTY keyboard we know of as the standard keyboard layout today from 1867 to 1868. Around the same time, Danish pastor Rasmus Malling-Hansen introduced the writing ball in 1870. It could also type letters onto paper but with a much more complicated keyboard layout. It was actually the first typewriter to go into mass production - but at this point new inventions were starting to follow the QWERTY layout. Because asdfjkl;. Both though were looking to increase typing speed with Malling-Mansen’s layout putting constanents on the right side and vowels on the left - but Sholes and Glidden mixed keys up to help reduce the strain on hardware as it recoiled, thus splitting common characters in words between the sides. 

James Densmore encountered the Sholes work and jumped in to help. They had it relentlessly tested and iterated on the design, getting more and more productivity gains and making the device more and more hardy. When the others left the project, it was Densmore and Sholes carrying on. But Sholes was also a politician and editor of a newspaper, so had a lot going on. He sold his share of the patent for their layout for $12,000 and Densmore decided to go with royalties instead. 

By the 1880s, the invention had been floating around long enough and given a standardized keyboard it was finally ready to be mass produced. This began with the Sholes & Glidden Type Writer introduced in America in 1874. That was followed by the Caligraph. But it was Remington that would take the Sholes patent and create the Remington Typewriter, removing the hyphen from the word typewriter and going mainstream - netting Densmore a million and a half bucks in 1800s money for his royalties. And if you’ve seen anything typed on it, you’ll note that it supported one font: the monospaced sans serif Grotesque style.

Characters had always been upper case. Remington added a shift key to give us the ability to do both upper and lower case in 1878 with the Remington Model 2. This was also where we got the ampersand, parenthesis,  percent symbol, and question mark as shift characters for numbers. Remington also added tab and margins in 1897. Mark Twain was the first author to turn a manuscript in from a typewriter using what else but the Remington Typewriter. By then, we were experimenting with the sizes and spaces between characters, or kerning, to make typed content easier to read. Some companies moved to slab serif or Pica fonts and typefaces. You could really tell a lot about a company by that Olivetti with it’s modern, almost anti-Latin fonts. 

The Remington Typewriter Company would later merge with the Rand Kardex company to form Remington Rand, making typewriters, guns, and then in 1950, acquiring the Eckert-Mauchly Computer Corporation, who made ENIAC - arguably the first all-digital computer. Rand also acquired Engineering Research Associates (or ERA) and introduced the Univac. Electronics maker Sperry acquired them in 1955, and then merged with Burroughs to form Unisys in 1988, still a thriving company. But what’s important is that they knew typewriters. And keyboards.

But electronics had been improving in the same era that Remington took their typewriters mainstream, and before. Samuel Morse developed the recording telegraph in 1835 and David Hughes added the printed telegraph. Emile Baudot gave us a 5 bit code in the 1870s that enhanced that but those were still using keys similar to what you find on a piano. The typewriter hadn’t yet merged with digital communications just yet. Thomas Edison patented the electric typewriter in 1872 but didn’t produce a working model. And this was a great time of innovation. For example, Alexander Graham Bell was hard at work on patenting the telephone at the time. 

James Smathers then gave us the first electronic typewriter in 1920 and by the 1930s improved Baudot, or baud was combined with a QUERTY keyboard by Siemens and others to give us typing over the wire. The Teletype Corporation was founded in 1906 and would go from tape punch and readers to producing the teletypes that allowed users to dial into mainframes in the 1970s timesharing networks. But we’re getting ahead of ourselves. How did we eventually end up plugging a keyboard into a computer?

Herman Hollerith, the mind behind the original IBM punch cards for tabulating machines before his company got merged with others to form IBM, brought us text keypunches, which were later used to input data into early computers. The Binac computer used a similar representation with 8 keys and an electromechanical control was added to input data into the computer like a punch card might - for this think of a modern 10-key pad. Given that we had electronic typewriters for a couple of decades it was only a matter of time before a full keyboard worth of text was needed on a computer. That came in 1954 with the pioneering work done MIT. Here, Douglas Ross wanted to hookup a Flexowriter electric typewriter to a computer, which would be done the next year as yet another of the huge innovations coming out of the Whirlwind project at MIT. With the addition of core memory to computing that was the first time a real keyboard (and being able to write characters into a computer) was really useful. After nearly 400 years since the first attempts to build a moveable type machine and then and just shy of 100 years since the layout had been codified, the computer keyboard was born. 

The PLATO team in late 60s University of Illinois Champaign Urbana were one of many research teams that sought to develop cheaper input output mechanisms for their computer Illiac and prior to moving to standard keyboards they built custom devices with fewer keys to help students select multiple choice answers. But eventually they used teletype-esque systems. 

Those early keyboards were mechanical. They still made a heavy clanky sound when the keys were pressed. Not as much as when using a big mechanical typewriter, but not like the keyboards we use today. These used keys with springs inside them. Springs would be replaced with pressure pads in some machines, including the Sinclair ZX80 and ZX81. And the Timex Sinclair 1000. Given that there were less moving parts, they were cheap to make. They used conductive traces with a gate between two membranes. When a key was pressed electricity flowed through what amounted to a flip-flop. When the key was released the electricity stopped flowing. I never liked them because they just didn’t have that feel. In fact, they’re still used in devices like microwaves to provide for buttons under led lights that you can press. 

By the late 1970s, keyboards were becoming more and more common. The next advancement was in Chiclet keyboards, common on the TRS-80 and the IBM PCjr. These were were like membrane keyboards but used moulded rubber. Scissor switch keyboards became the standard for laptops - these involve a couple of pieces of plastic under each key, arranged like a scissor. And more and more keyboards were produced. 

With an explosion in the amount of time we spent on computers, we eventually got about as many designs of ergonomic keyboards as you can think of. Here, doctors or engineers or just random people would attempt to raise or lower hands or move hands apart or depress various keys or raise them. But as we moved from desktops to laptops or typing directly on screens as we do with tablets and phones, those sell less and less.

I wonder what Sholes would say if you showed him and the inventors he worked with what the QWERTY keyboard looks like on an iPhone today? I wonder how many people know that at least two of the steps in the story of the keyboard had to do with helping the blind communicate through the written word? I wonder how many know about the work Alexander Graham Bell did with the deaf and the impact that had on his understanding of the vibrations of sound and the emergence of phonautograph to record sound and how that would become acoustic telegraphy and then the telephone, which could later stream baud? Well, we’re out of time for today so that story will have to get tabled for a future episode.

In the meantime, look around for places where there’s no standard. Just like the keyboard layout took different inventors and iterations to find the right amount of productivity, any place where there’s not yet a standard just needs that same level of deep thinking and sometimes generations to get it perfected. But we still use the QWERTY layout today and so sometimes once we find the right mix, we’ve set in motion an innovative that can become a true game changer. And if it’s not ready, at least we’ve contributed to the evolutions that revolutionize the world. Even if we don’t use those inventions. Bell famously never had a phone installed in his office. Because distractions. Luckily I disabled notifications on my phone before recording this or it would never get out… 


David Pogue - PowerBook Duo and Duo Dock Review (1993)

    Mac Folklore Radio 2/15/2021

David Pogue reviews the PowerBook Duo 210/230 and the companion Duo Dock. NuBus and SCSI weren’t hot pluggable, meaning you had to shut down the machine every time you docked or undocked!

Original text from Macworld Magazine, March 1993.

PowerBook Duo Dock sounds courtesy of the RetroMacCast on YouTube (insert, eject).


Apple and NeXT Computer

    The History of Computing 2/15/2021

Steve Jobs had an infamous split with the board of directors of Apple and left the company shortly after the release of the original Mac. He was an innovator who at 21 years old had started Apple in the garage with Steve Wozniak and at 30 years old while already plenty wealthy felt he still had more to give and do. We can say a lot of things about him but he was arguably one of the best product managers ever. 

He told Apple he’d be taking some “low-level staffers” and ended up taking Rich Page, Bud Tribble, Dan'l Lewin, George Crow, and Susan Barnes to be the CFO. They also took Susan Kare and Joanna Hoffman. had their eyes on a computer that was specifically targeting higher education. They wanted to build computers for researchers and universities. 

Companies like CDC and Data General had done well in Universities. The team knew there was a niche that could be carved out there. There were some gaps with the Mac that made it a hard sell in research environments. Computer scientists needed object-oriented programming and protected memory. Having seen the work at PARC on object-oriented languages, Jobs knew the power and future-proof approach. 

Unix System V had branched a number of times and it was a bit more of a red ocean than I think they realized. But Jobs put up $7 million of his own money to found NeXT Computer. He’d add another $5 million and Ross Perot would add another $20 million. The pay bands were one of the most straight-forward of any startup ever founded. The senior staff made $75,000 and everyone else got $50,000. Simple. 

Ironically, so soon after the 1984 Super Bowl ad where Jobs based IBM, they hired the man who designed the IBM logo, Paul Rand, to design a logo for NeXT. They paid him $100,000 flat. Imagine the phone call when Jobs called IBM to get them to release Rand from a conflict of interest in working with them. 

They released the first computer in 1988. The NeXT Computer, as it was called, was expensive for the day, coming in at $6,500. It sported a Motorola 68030 CPU and clocked in at a whopping 25 MHz. And it came with a special operating system called NeXTSTEP.

NeXTSTEP was based on the Mach kernel with some of the source code coming from BSD. If we go back a little, Unix was started at Bell Labs in 1969 and by the late 70s had been forked from Unix System V to BSD, Unix version 7, and PWB - with each of those resulting in other forks that would eventually become OpenBSD, SunOS, NetBSD, Solaris, HP-UX, Linux, AIX, and countless others. 

Mach was developed at Carnegie Mellon University and is one of the earliest microkernels. For Mach, Richard Rashid (who would later found Microsoft Research) and Avie Tevanian, were looking specifically to distributed computing. And the Mach project was kicked off in 1985, the same year Jobs left Apple. 

Mach was backwards-compatible to BSD 4.2 and so could run a pretty wide variety of software. It allowed for threads, or units of execution and tasks or objects that enabled threads. It provided support for messages, which for object oriented languages are typed data objects that fall outside the scope of tasks and threads and then a protected message queue, to manage the messages between tasks and rights of access. They stood it up on a DEC VAX and released it publicly in 1987.

Here’s the thing, Unix licensing from Bell Labs was causing problems. So it was important to everyone that the license be open. And this would be important to NeXT as well. NeXT needed a next-generation operating system and so Avi Tevanian was recruited to join NeXT as the Vice President of Software Engineering. There, he designed NeXTSTEP with a handful of engineers.

The computers had custom boards and were fast. And they were a sleek black like nothing I’d seen before. But Bill Gates was not impressed claiming that “If you want black, I’ll get you a can of paint.” But some people loved the machines and especially some of the tools NeXT developed for programmers.

They got a factory to produce the machines and it only needed to crank out 100 a month as opposed to the thousands it was built to produce. In other words, the price tag was keeping universities from buying the machines. So they pivoted a little. They went up-market with the NeXTcube in 1990, which ran NeXTSTEP, OPENSTEP, or NetBSD and came with the Motorola 68040 CPU. This came machine in at $8,000 to almost $16,000. It came with a hard drive. For the lower end of the market they also released the NeXTstation in 1990, which shipped for just shy of $5,000.

The new models helped but by 1991 they had to lay off 5 percent of the company and another 280 by 1993. That’s when the hardware side got sold to Canon so NeXT could focus exclusively on NeXTSTEP.  That is, until they got acquired by Apple in 1997.

By the end, they’d sold around 50,000 computers. Apple bought NeXT for $429 million and 1.5 million shares of Apple stock, trading at 22 cents at the time, which was trading at $17 a share so worth another $25 and a half million dollars. That makes the deal worth $454 million or $9,080 per machine NeXT had ever built. But it wasn’t about the computer business, which had already been spun down. It was about Jobs and getting a multi-tasking, object-oriented, powerhouse of an operating system, the grandparent of OS X - and the derivative macOS, iOS, iPadOS, watchOS, and tvOS forks.

The work done at NeXT has had a long-term impact on the computer industry as a whole. For one, the spinning pinwheel on a Mac. And the Dock. And the App Store. And Objective-C. But also Interface Builder as an IDE was revolutionary. Today we use Xcode. But many of the components go back all the way. And so much more. 

After the acquisition, NeXT became Mac OS X Server in 1999 and by 2001 was Mac OS X. The rest there is history. But the legacy of the platform is considerable. Just on NeXTSTEP we had a few pretty massive successes.

Tim Berners-Lee developed the first web browser WorldWideWeb on NeXTSTEP for a NeXT . Other browsers for other platforms would come but his work became the web as we know it today. The machine he developed the web on is now on display at the National Museum of Science and Media in the UK.

We also got games like Quake, Heretic, Stife, and Doom from Interface Builder. And webobjects. And the people. 

Tevanian came with NeXT to Apple as the Senior Vice President of Software Engineering. Jobs became an advisor, then CEO. Craig Federighi came with the acquisition as well - now Apple’s VP of software engineering. And I know dozens of others who came in from NeXT and helped reshape the culture at Apple.

Next.com still redirects to Apple.com. It took three years to ship that first computer at NeXT. It took 2 1/2 years to develop the iPhone. The Apple II, iPod, iPad, and first iMac were much less. Nearly 5 years for the original Mac. Some things take a little more time to flush out than others. Some need the price of components or new components to show up before you know it can be insanely great. Some need false starts like the Steve Jobs Steve Jobs famously said Apple wanted to create a computer in a book in 1983. That finally came out with the release of the iPad in 2010, 27 years later. 

And so the final component of the Apple acquisition of NeXT to mention is Steve Jobs himself. He didn’t initially come in. He’d just become a billionaire off Pixar and was doing pretty darn well. His arrival back at Apple signified the end of a long draught for the company and all those products we mentioned and the iTunes music store and the App Store (both initially built on WebObjects) would change the way we consume content forever. His impact was substantial. For one, after factoring stock splits, the company might still be trading at .22 cents a share, which is what it would be today with all that. Instead they’re the most highly valued company in the world. But that pales in comparison to the way he and his teams and that relentless eye to product and design has actually changed the world. And the way his perspectives on privacy help protect us today, long after he passed. 

The heroes journey (as described is a storytelling template that follows a hero from disgrace, to learn the mistakes of their past and reinvent themselves amidst a crisis throughout a grand adventure, and return home transformed. NeXT and Pixar represent part of that journey here. Which makes me wonder: what is my own Monomyth? Where will I return to? What is or was my abyss? These can be large or small. And while very few people in the world will have one like Steve Jobs did, we should all reflect on ours and learn from them. And yes that was plural because life is not so simple that there is one.

The past, and our understanding of it, predicts the future. Good luck on your journey. 


Rule of ThumbDrive

    RetroMacCast 2/14/2021

James and John discuss eBay Finds: Mac Guided Tour audio cassette, Quadra 950, Apple umbrella. They look back at February 2001 in MacAddict magazine, and news includes mini vMac on your calculator, and a GameBoy as an Apple TV remote control.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Apple's Lost Decade

    The History of Computing 2/12/2021

I often think of companies in relation to their contribution to the next evolution in the forking and merging of disciplines in computing that brought us to where we are today. Many companies have multiple contributions. Few have as many such contributions as Apple. But there was a time when they didn’t seem so innovative. 

This lost decade began about half way through the tenure of John Sculley and can be seen through the lens of the CEOs. There was Sculley, CEO from 1983 to 1993. Co-founders and spiritual centers of Apple, Steve Jobs and Steve Wozniak, left Apple in 1985. Jobs to create NeXT and Wozniak to jump into a variety of companies like making universal remotes, wireless GPS trackers, and and other adventures. 

This meant Sculley was finally in a position to be fully in charge of Apple. His era would see sales 10x from $800 million to $8 billion. Operationally, he was one of the more adept at cash management, putting $2 billion in the bank by 1993. Suddenly the vision of Steve Jobs was paying off. That original Mac started to sell and grow markets. But during this time, first the IBM PC and then the clones, all powered by the Microsoft operating system, completely took the operating system market for personal computers. Apple had high margins yet struggled for relevance. 

Under Sculley, Apple released HyperCard, funded a skunkworks team in General Magic, arguably the beginning of ubiquitous computing, and using many of those same ideas he backed the Newton, coining the term personal digital assistant. Under his leadership, Apple marketing sent 200,000 people home with a Mac to try it out. Put the device in the hands of the people is probably one of the more important lessons they still teach newcomers that work in Apple Stores. 

Looking at the big financial picture it seems like Sculley did alright. But in Apple’s fourth-quarter earnings call in 1993, they announced a 97 drop from the same time in 1992. This was also when a serious technical debt problem began to manifest itself. 

The Mac operating system grew from the system those early pioneers built in 1984 to Macintosh System Software going from version 1 to version 7. But after annual releases leading to version 6, it took 3 years to develop system 7 and the direction to take with the operating system caused a schism in Apple engineering around what would happen once 7 shipped. Seems like most companies go through almost the exact same schism. Microsoft quietly grew NT to resolve their issues with Windows 3 and 95 until it finally became the thing in 2000. IBM had invested heavily into that same code, basically, with Warp - but wanted something new. 

Something happened while Apple was building macOS 7. They lost Jean Lois Gasseé who had been head of development since Steve Jobs left. When Sculley gave everyone a copy of his memoir, Gasseé provided a copy of The Mythical Man-Month, from Fred Brooks’ experience with the IBM System 360. It’s unclear today if anyone read it. To me this is really the first big sign of trouble. Gassée left to build another OS, BeOS. 

By the time macOS 7 was released, it was clear that the operating system was bloated, needed a massive object-oriented overhaul, and under Sculley the teams were split, with one team eventually getting spun off into its own company and then became a part of IBM to help with their OS woes. The team at Apple took 6 years to release the next operating system. Meanwhile, one of Sculley’s most defining decisions was to avoid licensing the Macintosh operating system. Probably because it was just too big a mess to do so. And yet everyday users didn’t notice all that much and most loved it. 

But third party developers left. And that was at one of the most critical times in the history of personal computers because Microsoft was gaining a lot of developers for Windows 3.1 and released the wildly popular Windows 95. 

The Mac accounted for most of the revenue of the company, but under Sculley the company dumped a lot of R&D money into the Newton. As with other big projects, the device took too long to ship and when it did, the early PDA market was a red ocean with inexpensive competitors. The Palm Pilot effectively ended up owning that pen computing market. 

Sculley was a solid executive. And he played the part of visionary from time to time. But under his tenure Apple found operating system problems, rumors about Windows 95, developers leaving Apple behind for the Windows ecosystem, and whether those technical issues are on his lieutenants or him, the buck stocks there. The Windows clone industry led to PC price wars that caused Apple revenues to plummet. And so Markkula was off to find a new CEO. 

Michael Spindler became the CEO from 1993 to 1996. The failure of the Newton and Copland operating systems are placed at his feet, even though they began in the previous regime. Markkula hired Digital Equipment and Intel veteran Spindler to assist in European operations and he rose to President of Apple Europe and then ran all international. He would become the only CEO to have no new Mac operating systems released in his tenure. Missed deadlines abound with Copland and then Tempo, which would become Mac OS 8. 

And those aren’t the only products that came out at the time. We also got the PowerCD, the Apple QuickTake digital camera, and the Apple Pippin. Bandai had begun trying to develop a video game system with a scaled down version of the Mac. The Apple Pippin realized Markkula’s idea from when the Mac was first conceived as an Apple video game system. 

There were a few important things that happened under Spindler though. First, Apple moved to the PowerPC architecture. Second, he decided to license the Macintosh operating system to companies wanting to clone the Macintosh. And he had discussions with IBM, Sun, and Philips to acquire Apple. Dwindling reserves, increasing debt. Something had to change and within three years, Spindler was gone.

Gil Amelio was CEO from 1996 to 1997. He moved from the board while the CEO at National Semiconductor to CEO of Apple. He inherited a company short on cash and high on expenses. He quickly began pushing forward OS 8, cut a third of the staff, streamline operations, dumping some poor quality products, and releasing new products Apple needed to be competitive like the Apple Network Server. 

He also tried to acquire BeOS for $200 million, which would have Brough Gassée back but instead acquired NeXT for $429 million. But despite the good trajectory he had the company on, the stock was still dropping, Apple continued to lose money, and an immovable force was back - now with another decade of experience launching two successful companies: NeXT and Pixar. 

The end of the lost decade can be seen as the return of Steve Jobs. Apple didn’t have an operating system. They were in a lurch soy-to-speak. I’ve seen or read it portrayed that Steve Jobs intended to take control of Apple. And I’ve seen it portrayed that he was happy digging up carrots in the back yard but came back because he was inspired by Johnny Ive. But I remember the feel around Apple changed when he showed back up on campus. As with other companies that dug themselves out of a lost decade, there was a renewed purpose. There was inspiration. 

By 1997, one of the heroes of the personal computing revolution, Steve Jobs, was back. But not quite… He became interim CEO in 1997 and immediately turned his eye to making Apple profitable again. Over the past decade, the product line expanded to include a dozen models of the Mac. Anyone who’s read Geoffrey Moore’s Crossing the Chasm, Inside the Tornado, and Zone To Win knows this story all too well. We grow, we release new products, and then we eventually need to take a look at the portfolio and make some hard cuts. 

Apple released the Macintosh II in 1987 then the Macintosh Portable in 1989 then the Iicx and II ci in 89 along with the Apple IIgs, the last of that series. By facing competition in different markets, we saw the LC line come along in 1990 and the Quadra in 1991, the same year three models of the PowerBook were released. Different printers, scanners, CD-Roms had come along by then and in 1993, we got a Macintosh TV, the Apple Newton, more models of the LC and by 1994 even more of those plus the QuickTake, Workgroup Server, the Pippin and by 1995 there were a dozen Performas, half a dozen Power Macintosh 6400s, the Apple Network Server and yet another versions of the Performa 6200 and we added the eMade and beige G3 in 1997. The SKU list was a mess. Cleaning that up took time but helped prepare Apple for a simpler sales process. Today we have a good, better, best with each device, with many a computer being build-to-order. 

Jobs restructured the board, ending the long tenure of Mike Markkula, who’d been so impactful at each stage of the company so far. One of the forces behind the rise of the Apple computer and the Macintosh was about to change the world again, this time as the CEO. 


The Unlikely Rise Of The Macintosh

    The History of Computing 2/9/2021

There was a nexus of Digital Research and Xerox PARC, along with Stanford and Berkeley in the Bay Area. The rise of the hobbyists and the success of Apple attracted some of the best minds in computing to Apple. This confluence was about to change the world. One of those brilliant minds that landed at Apple started out as a technical writer. 

Apple hired Jef Raskin as their 31st employee, to write the Apple II manual. He quickly started harping on people to build a computer that was easy to use. Mike Markkula wanted to release a gaming console or a cheap computer that could compete with the Commodore and Atari machines at the time. He called the project “Annie.”

The project began with Raskin, but he had a very different idea than Markkula’s. He summed it up in an article called “Computers by the Millions” that wouldn’t see publication until 1982. His vision was closer to his PhD dissertation, bringing computing to the masses. For this, he envisioned a menu driven operating system that was easy to use and inexpensive. Not yet a GUI in the sense of a windowing operating system and so could run on chips that were rapidly dropping in price. He planned to use the 6809 chip for the machine and give it a five inch display. 

He didn’t tell anyone that he had a PhD when he was hired, as the team at Apple was skeptical of academia. Jobs provided input, but was off working on the Lisa project, which used the 68000 chip. So they had free reign over what they were doing. 

Raskin quickly added Joanna Hoffman for marketing. She was on leave from getting a PhD in archaeology at the University of Chicago and was the marketing team for the Mac for over a year. They also added Burrell Smith, employee #282 from the hardware technician team, to do hardware. He’d run with the Homebrew Computer Club crowd since 1975 and had just strolled into Apple one day and asked for a job. 

Raskin also brought in one of his students from the University of California San Diego who was taking a break from working on his PhD in neurochemistry. Bill Atkinson became employee 51 at Apple and joined the project. They pulled in Andy Hertzfeld, who Steve Jobs hired when Apple bought one of his programs as he was wrapping up his degree at Berkeley and who’d been sitting on the Apple services team and doing Apple III demos.

They added Larry Kenyon, who’d worked at Amdahl and then on the Apple III team. Susan Kare came in to add art and design. They, along with Chris Espinosa - who’d been in the garage with Jobs and Wozniak working on the Apple I, ended up comprising the core team.

Over time, the team grew. Bud Tribble joined as the manager for software development. Jerrold Manock, who’d designed the case of the Apple II, came in to design the now-iconic Macintosh case. The team would eventually expand to include Bob Belleville, Steve Capps, George Crow, Donn Denman, Bruce Horn, and Caroline Rose as well. It was still a small team. And they needed a better code name. But chronologically let’s step back to the early project. 

Raskin chose his favorite Apple, the Macintosh, as the codename for the project. As far as codenames go it was a pretty good one. So their mission would be to ship a machine that was easy to use, would appeal to the masses, and be at a price point the masses could afford. They were looking at 64k of memory, a Motorola 6809 chip, and a 256 bitmap display. Small, light, and inexpensive.

Jobs’ relationship with the Lisa team was strained and he was taken off of that and he started moving in on the Macintosh team. It was quickly the Steve Jobs show. 

Having seen what could be done with the Motorola 68000 chip on the Lisa team, Jobs had them redesign the board to work with that. After visiting Xerox PARC at Raskin’s insistence, Jobs finally got the desktop metaphor and true graphical interface design. 

Xerox had not been quiet about the work at PARC. Going back to 1972 there were even television commercials. And Raskin had done time at PARC while on sabbatical from Stanford. Information about Smalltalk had been published and people like Bill Atkinson were reading about it in college. People had been exposed to the mouse all around the Bay Area in the 60s and 70s or read Engelbart’s scholarly works on it. Many of the people that worked on these projects had doctorates and were academics. They shared their research as freely as love was shared during that counter-culture time. Just as it had passed from MIT to Dartmouth and then in the back of Bob Albrecht’s VW had spread around the country in the 60s. That spirit of innovation and the constant evolutions over the past 25 years found their way to Steve Jobs. 

He saw the desktop metaphor and mouse and fell in love with it, knowing they could build one for less than the $400 unit Xerox had. He saw how an object-oriented programming language like Smalltalk made all that possible. The team was already on their way to the same types of things and so Jobs told the people at PARC about the Lisa project, but not yet about the Mac. In fact, he was as transparent as anyone could be. He made sure they knew how much he loved their work and disclosed more than I think the team planned on him disclosing about Apple. 

This is the point where Larry Tesler and others realized that the group of rag-tag garage-building Homebrew hackers had actually built a company that had real computer scientists and was on track to changing the world. Tesler and some others would end up at Apple later - to see some of their innovations go to a mass market. Steve Jobs at this point totally bought into Raskin’s vision. Yet he still felt they needed to make compromises with the price and better hardware to make it all happen. 

Raskin couldn’t make the kinds of compromises Jobs wanted. He also had an immunity to the now-infamous Steve Jobs reality distortion field and they clashed constantly. So eventually Raskin the project just when it was starting to take off. Raskin would go on to work with Canon to build his vision, which became the Canon CAT. 

With Raskin gone, and armed with a dream team of mad scientists, they got to work, tirelessly pushing towards shipping a computer they all believed would change the world. Jobs brought in Fernandez to help with projects like the macOS and later HyperCard. Wozniak had a pretty big influence over Raskin in the early days of the Mac project and helped here and there withe the project, like with the bit-serial peripheral bus on the Mac. 

Steve Jobs wanted an inexpensive mouse that could be manufactured en masse. Jim Yurchenco from Hovey-Kelley, later called Ideo, got the task - given that trusted engineers at Apple had full dance cards. He looked at the Xerox mouse and other devices around - including trackballs in Atari arcade machines. Those used optics instead of mechanical switches. As the ball under the mouse rolled beams of light would be interrupted and the cost of those components had come down faster than the technology in the Xerox mouse.  He used a ball from a roll-on deodorant stick and got to work. The rest of the team designed the injection molded case for the mouse. That work began with the Lisa and by the time they were done, the price was low enough that every Mac could get one. 

Armed with a mouse, they figured out how to move windows over the top of one another, Susan Kare designed iconography that is a bit less 8-bit but often every bit as true to form today. Learning how they wanted to access various components of the desktop, or find things, they developed the Finder. Atkinson gave us marching ants, the concept of double-clicking, the lasso for selecting content, the menu bar, MacPaint, and later, HyperCard. 

It was a small team, working long hours. Driven by a Jobs for perfection. Jobs made the Lisa team the enemy. Everything not the Mac just sucked. He took the team to art exhibits. He had the team sign the inside of the case to infuse them with the pride of an artist. He killed the idea of long product specifications before writing code and they just jumped in, building and refining and rebuilding and rapid prototyping. The team responded well to the enthusiasm and need for perfectionism. 

The Mac team was like a rebel squadron. They were like a start-up, operating inside Apple. They were pirates. They got fast and sometimes harsh feedback. And nearly all of them still look back on that time as the best thing they’ve done in their careers. 

As IBM and many learned the hard way before them, they learned a small, inspired team, can get a lot done. With such a small team and the ability to parlay work done for the Lisa, the R&D costs were minuscule until they were ready to release the computer. And yet, one can’t change the world over night. 1981 turned into 1982 turned into 1983. 

More and more people came in to fill gaps. Collette Askeland came in to design the printed circuit board. Mike Boich went to companies to get them to write software for the Macintosh. Berry Cash helped prepare sellers to move the product. Matt Carter got the factory ready to mass produce the machine. Donn Denman wrote MacBASIC (because every machine needed a BASIC back then). Martin Haeberli helped write MacTerminal and Memory Manager. Bill Bull got rid of the fan. Patti King helped manage the software library. Dan Kottke helped troubleshoot issues with mother boards. Brian Robertson helped with purchasing. Ed Riddle designed the keyboard. Linda Wilkin took on documentation for the engineering team. It was a growing team. Pamela Wyman and Angeline Lo came in as programmers. Hap Horn and Steve Balog as engineers. 

Jobs had agreed to bring in adults to run the company. So they recruited 44 years old hotshot CEO John Sculley to change the world as their CEO rather than selling sugar water at Pepsi. Scully and Jobs had a tumultuous relationship over time. While Jobs had made tradeoffs on cost versus performance for the Mac, Sculley ended up raising the price for business reasons.

Regis McKenna came in to help with the market campaign. He would win over so much trust that he would later get called out of retirement to do damage control when Apple had an antenna problem on the iPhone. We’ll cover Antenna-gate at some point. They spearheaded the production of the now-iconic 1984 Super Bowl XVIII ad, which shows woman running from conformity and depicted IBM as the Big Brother from George Orwell’s book, 1984. 

Two days after the ad, the Macintosh 128k shipped for $2,495. The price had jumped because Scully wanted enough money to fund a marketing campaign. It shipped late, and the 128k of memory was a bit underpowered, but it was a success. Many of the concepts such as a System and Finder, persist to this day. It came with MacWrite and MacPaint and some of the other Lisa products were soon to follow, now as MacProject and MacTerminal. But the first killer app for the Mac was Microsoft Word, which was the first version of Word ever shipped. 

Every machine came with a mouse. The machines came with a cassette that featured a guided tour of the new computer. You could write programs in MacBASIC and my second language, MacPascal. 

They hit the initial sales numbers despite the higher price. But over time that bit them on sluggish sales. Despite the early success, the sales were declining. Yet the team forged on. They introduced the Apple LaserWriter at a whopping $7,000. This was a laser printer that was based on the Canon 300 dpi engine. Burrell Smith designed a board and newcomer Adobe knew laser printers, given that the founders were Xerox alumni. They added postscript, which had initially been thought up while working with Ivan Sutherland and then implemented at PARC, to make for perfect printing at the time.

The sluggish sales caused internal issues. There’s a hangover  when we do something great. First there were the famous episodes between Jobs, Scully, and the board of directors at Apple. Scully seems to have been portrayed by many to be either a villain or a court jester of sorts in the story of Steve Jobs. Across my research, which began with books and notes and expanded to include a number of interviews, I’ve found Scully to have been admirable in the face of what many might consider a petulant child. But they all knew a brilliant one. 

But amidst Apple’s first quarterly loss, Scully and Jobs had a falling out. Jobs tried to lead an insurrection and ultimately resigned. Wozniak had left Apple already, pointing out that the Apple II was still 70% of the revenues of the company. But the Mac was clearly the future. 

They had reached a turning point in the history of computers. The first mass marketed computer featuring a GUI and a mouse came and went. And so many others were in development that a red ocean was forming. Microsoft released Windows 1.0 in 1985. Acorn, Amiga, IBM, and others were in rapid development as well. 

I can still remember the first time I sat down at a Mac. I’d used the Apple IIs in school and we got a lab of Macs. It was amazing. I could open a file, change the font size and print a big poster. I could type up my dad’s lyrics and print them. I could play SimCity. It was a work of art. And so it was signed by the artists that brought it to us:

Peggy Alexio, Colette Askeland, Bill Atkinson, Steve Balog, Bob Belleville, Mike Boich, Bill Bull, Matt Carter, Berry Cash, Debi Coleman, George Crow, Donn Denman, Christopher Espinosa, Bill Fernandez, Martin Haeberli, Andy Hertzfeld, Joanna Hoffman, Rod Holt, Bruce Horn, Hap Horn, Brian Howard, Steve Jobs, Larry Kenyon, Patti King, Daniel Kottke, Angeline Lo, Ivan Mach, Jerrold Manock, Mary Ellen McCammon, Vicki Milledge, Mike Murray, Ron Nicholson Jr., Terry Oyama, Benjamin Pang, Jef Raskin, Ed Riddle, Brian Robertson, Dave Roots, Patricia Sharp, Burrell Smith, Bryan Stearns, Lynn Takahashi, Guy "Bud" Tribble, Randy Wigginton, Linda Wilkin, Steve Wozniak, Pamela Wyman and Laszlo Zidek.

Steve Jobs left to found NeXT. Some, like George Crow, Joanna Hoffman, and Susan Care, went with him. Bud Tribble would become a co-founder of NeXT and then the Vice President of Software Technology after Apple purchased NeXT.

Bill Atkinson and Andy Hertzfeld would go on to co-found General Magic and usher in the era of mobility. One of the best teams ever assembled slowly dwindled away. And the oncoming dominance of Windows in the market took its toll.

It seems like every company has a “lost decade.” Some like Digital Equipment don’t recover from it. Others, like Microsoft and IBM (who has arguably had a few), emerge as different companies altogether. Apple seemed to go dormant after Steve Jobs left. They had changed the world with the Mac. They put swagger and an eye for design into computing. But in the next episode we’ll look at that long hangover, where they were left by the end of it, and how they emerged to become to change the world yet again. 

In the meantime, Walter Isaacson weaves together this story about as well as anyone in his book Jobs. Steven Levy brilliantly tells it in his book Insanely Great. Andy Hertzfeld gives some of his stories at folklore.org. And countless other books, documentaries, podcasts, blog posts, and articles cover various aspects as well. The reason it’s gotten so much attention is that where the Apple II was the watershed moment to introduce the personal computer to the mass market, the Macintosh was that moment for the graphical user interface.


Numeric Control and Digital Westerns

    Advent of Computing 2/8/2021

Saga II was a program developed in 1960 that automatically wrote screenplays for TV westerns. Outwardly it looks like artificial intelligence, but that's not entirely accurate. Saga has much more in common with CNC software than AI. This episode we take a look at how the same technology that automated manufacturing found it's way into digital westerns, and how numerically controlled mills are remarkably similar to stage plays.

Clips drawn from The Thinking Machine: https://techtv.mit.edu/videos/10268-the-thinking-machine-1961---mit-centennial-film

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


Apple VideoPhone Kit

    RetroMacCast 2/7/2021

James and John discuss eBay Finds: Macintosh TV remote control, Think Different crystal, and Apple 1. James opens his Apple VideoPhone Kit, and news includes Apple's quarterly report and Spotify iPod.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Send in the Clones

    RetroMacCast 2/7/2021

James, John and Steve discuss eBay Finds: Power Computing 100, SuperMac C600, and Power Computing Field Vest. Steve from Mac84 introduces his series, "The Rise and Fall of the Macintosh Clones" and news includes the Macintosh birthday.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Macintosh TV Test

    RetroMacCast 2/7/2021

James & John discuss eBay Finds: Power Mac G4 Cube prototype shell, Mac Classic II, and classic Mac lot . They turn on James's Macintosh TV, and news includes new iMac rumors, Baking an Apple Pi, and Mac84's new series on Apple clones.

 

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


On Chariots of the Gods?

    The History of Computing 2/6/2021

Humanity is searching for meaning. We binge tv shows. We get lost in fiction. We make up amazing stories about super heroes. We hunt for something deeper than what’s on the surface. We seek conspiracies or... aliens.

I finally got around to reading a book that had been on my list for a long time, recently. Not because I thought I would agree with its assertions - but because it came up from time to time in my research. 

Chariots of the Gods? is a book written in 1968 by German Erich Von Daniken. He goes through a few examples to, in his mind, prove that aliens not only had been to Earth but that they destroyed Sodom with fire and brimstone which he said was a nuclear explosion. He also says the Ark of the Covenant was actually a really big walkie-talkie for calling space. 

Ultimately, the thesis centers around the idea than humans could not possibly have made the technological leaps we did and so must have been given to us from the gods. I find this to be a perfectly satisfactory science fiction plot. In fact, various alien conspiracy theories seemed to begin soon after Orson Welles 1938 live adaption of H.G. Wells’ War of the Worlds and like a virus, they mutated. But did this alien virus start in a bat in Wuhan or in Roman Syria. 

The ancient Greeks and then Romans had a lot of gods. Lucian of Samosata thought they should have a couple more. He wove together a story, which he called “A True Story.” In it, he says it’s all make-believe. Because they believed in multiple pantheons of gods in modern day Syria in the second century AD. In the satire, Lucian and crew get taken to the Moon where they get involved in a war between the Moon and the Sun kings for the rights to colonize the Morning Star. They then get eaten by a whale and escape and travel meeting great Greeks through time including Pythagoras, Homer, and Odysseus. And they find the new world. Think of how many modern plots are wrapped up in that book from the second century, made to effectively make fun of storytellers like Homer?

The 1800s was one of the first centuries where humanity began to inherit a rapid merger and explosion of scientific understanding and Edgar Allan Poe again took us to the moon in "The Unparalleled Adventure of One Hans Pfaall" in 1835. Jules Verne, Mary Shelley, and then H.G. Welles with that War of the Worlds in 1898. By then we’d mapped the surface of the moon with telescopes, so they wrote of Mars and further. H.P. Lovecraft gave us the Call of Cthulhu. These authors predicted the future - but science fiction became a genre that did more. It helped us create satire or allegory or just comparisons to these rapid global changes in ways that called out the social impact to consider before or after we invent. And to just cope with evolving social norms. The magazine Amazing Stories came in 1926 and the greatest work of science fiction premiered in 1942 with Isaac Asimov’s Foundation. Science fiction was opening our eyes to what was possible and opened the minds of scientists to study what we might create in the future. But it wasn’t real. 

Von Daniken and French author Robert Charroux seemed to influence one another in taking history and science and turning them into pseudohistory and pseudoscience. And both got many of their initial ideas from the 1960 book, The Morning of the Magicians. But Chariots of the Gods? was a massive success and a best seller. And rather than be dismissed it has now spread to include conspiracy and other theories. Which is fine as fiction, not as non-fiction. 

Let’s look at some other specific examples from Chariots of the Gods? Von Daniken claims that Japanese Dogu figures were carvings of aliens. He claims there were alien helicopter carvings in an Egyptian temple. He claims the Nazca lines in Peru were a way to call aliens and that a map from 1513 actually showed the earth from space rather than thinking it possible that cartography was capable of showing a somewhat accurate representation of the world in the Age of Discovery. He claimed stories in the Bible were often inspired by alien visits much as some First Nation peoples and cargo cults thought people in ships visiting their lands for the first time might be gods. 

The one thing I’ve learned researching these episodes is that technology has been a constant evolution. Many of our initial discoveries like fire, agriculture, and using the six simple machines could be observed in nature. From the time we learned to make fire, it was only a matter of time before humanity discovered that stones placed in or around fire might melt in certain ways - and so metallurgy was born. We went through population booms as we discovered each of these.

We used the myths and legends that became religions to hand down knowledge, as I was taught to use mnemonics to memorize the seven layers of the OSI model. That helped us preserve knowledge of astronomy across generations so we could explore further and better maintain our crops. 

The ancient Sumerians then Babylonians gave us writing. But we had been drawing on caves for thousands of years. Which seems more likely, that we were gifted this advance or that as we began to settle in more dense urban centers that we out of a need to scale operations tracked the number of widgets we had with markings that, over time evolved into a written language? First through pictures and then through words that evolved into sentences and then epics? We could pass down information more reliably across generation. 

Trade and commerce and then ziggurats and pyramids help hone our understanding of mathematics. The study of logic and automata allowed us to build bigger and faster and process more raw materials. Knowledge of all of these discoveries spread across trade routes. 

So ask yourself this. Which is more likely, the idea that humans maintained a constant, ever-evolving stream of learned ingenuity that was passed down for tens of thousands of years until it accelerated when we learned to write, or do you think aliens from outer space instead gave us technology? 

I find it revokes our very agency to assert anything but the idea that humans are capable of the fantastic feats we have reached and believe it insulting to take away from the great philosophers, discoverers, scientists, and thinkers that got us where we are today. 

Our species has long made up stories to explain that which the science of the day cannot. Before we understand the why, we make up stories about the how. This allowed us to pass knowledge down between generations. We see this in ancient explanations of the movements of stars before we had astrolabes. We see humans want to leave something behind that helps the next generations, or burial sites like with Stonehenge - not summon Thor from an alien planet as Marvel has rewritten their own epics to indicate. In part based on rethinking these mythos in the context of Chariots of the Gods?

Ultimately the greater our gaps in understanding, the more disconnected with ourselves I find that most people are. We listen to talking heads rather than think for ourselves. We get lost in theories of cabals. We seek a deeper, missing knowledge because we can’t understand everything in front of us. 

Today, if we know where to look, and can decipher the scientific jargon, all the known knowledge of science and history are at our fingertips. But it can take a lifetime to master one of thousands of fields of scientific research. If we don’t have that specialty then we can perceive it as unreachable and think maybe this pseudohistorical account of humanity is true and maybe aliens gave us 

If we feel left behind then it becomes easier to blame others when we can’t get below the surface of complicated concepts. Getting left behind might mean that jobs don’t pay what they paid our parents. We may perceive others as getting attention or resources we feel we deserve. We may feel isolated and alone. And all of those are valid feelings. When they’re heard then maybe we can look to the future instead of accepting pseudoscience and pseudohistory and conspiracies. Because while they make for fun romps on the big screen, they’re dangerous when taken as fact.


The Apple Lisa

    The History of Computing 2/2/2021

Apple found massive success on the back of the Apple II. They went public like many of the late 70s computer companies and the story could have ended there, as it did for many computer companies of the era who were potentially bigger, had better technology, better go to market strategies, and/or even some who were far more innovative. 

But it didn’t. The journey to the next stage began with the Apple IIc, Apple IIgs, and other incrementally better, faster, or smaller models. Those funded the research and development of a number of projects. One was a new computer: the Lisa. I bet you thought we were jumping into the Mac next. Getting there. But twists and turns, as the title suggests. 

The success of the Apple II led to many of the best and brightest minds in computers wanting to go work at Apple. Jobs came to be considered a visionary. The pressure to actually become one has been the fall of many a leader. And Jobs almost succumbed to it as well. 

Some go down due to a lack of vision, others because they don’t have the capacity for executional excellence. Some lack lieutenants they can trust. The story isn’t clear with Jobs. He famously sought perfection. And sometimes he got close. 

The Xerox Palo Alto Research Center, or PARC for short, had been a focal point of raw research and development, since 1970. They inherited many great innovations, outlandish ideas, amazing talent, and decades of research from academia and Cold War-inspired government grants. Ever since Sputnik, the National Science Foundation and the US Advanced Research Projects Agency had funded raw research. During Vietnam, that funding dried up and private industry moved in to take products to market. 

Arthur Rock had come into Xerox in 1969, on the back of an investment into Scientific Data Systems. While on the board of Xerox, he got to see the advancements being made at PARC. PARC hired some of the oNLine System (NLS) team who worked to help ship the Xerox Alto in 1973, shipping a couple thousand computers. They followed that up with the Xerox Star in 1981, selling about 20,000. But PARC had been at it the whole time, inventing all kinds of goodness. 

And so always thinking of the next computer, Apple started the Lisa project in 1978, the year after the release of the Apple II, when profits were just starting to roll in. 

Story has it that Steve Jobs secured a visit to PARC and made out the back with the idea for a windowing personal computer GUI complete with a desktop metaphor. But not so fast. Apple had already begun the Lisa and Macintosh projects before Jobs visited Xerox. And after the Alto was shown off internally at Xerox in 1977, complete with Mother of All Demo-esque theatrics on stages using remote computers. They had the GUI, the mouse, and networking - while the other computers released that year, the Apple II, Commodore, and TRS-80 were still doing what Dartmouth, the University of Illinois, and others had been doing since the 60s - just at home instead of on time sharing computers. 

In other words, enough people in computing had seen the oNLine System from Stanford. The graphical interface was coming and wouldn’t be stopped. The mouse had been written about in scholarly journals. But it was all pretty expensive. The visits to PARC, and hiring some of the engineers, helped the teams at Apple figure out some of the problems they didn’t even know they had. They helped make things better and they helped the team get there a little quicker. But by then the coming evolution in computing was inevitable. 

Still, the Xerox Star was considered a failure. But Apple said “hold my beer” and got to work on a project that would become the Lisa. It started off simply enough: some ideas from Apple executives like Steve Jobs and then 10 people, led by Ken Rothmuller, to develop a system with windows and a mouse. Rothmuller got replaced with John Couch, Apple’s 54th employee. Trip Hawkins got a great education in marketing on that team. He would later found Electronic Arts, one of the biggest video game publishers in the world.

Larry Tesler from the Stanford AI Lab and then Xerox PARC joined the team to run the system software team. He’d been on ARPANet since writing Pub an early markup language and was instrumental in the Gypsy Word Processor, Smalltalk, and inventing copy and paste. Makes you feel small to think of some of this stuff. 

Bruce Daniels, one of the Zork creators from MIT, joined the team from HP as the software manager. 

Wayne Rosing, formerly of Digital and Data General, was brought in to design the hardware. He’d later lead the Sparc team and then become a VP of Engineering at Google.  

The team grew. They brought in Bill Dresselhaus as a principal product designer for the look and use and design and even packaging. They started with a user interface and then created the hardware and applications. 

Eventually there would be nearly 100 people working on the Lisa project and it would run over $150 million in R&D. After 4 years, they were still facing delays and while Jobs had been becoming more and more involved, he was removed from the project. The personal accounts I’ve heard seem to be closer to other large out of control projects at companies that I’ve seen though. 

The Apple II used that MOS 6502 chip. And life was good. The Lisa used the Motorola 68000 at 5 MHz. This was a new architecture to replace the 6800. It was time to go 32-bit. 

The Lisa was supposed to ship with between 1 and 2 megabytes of RAM. It had a built-in 12 inch screen that was 720 x 364. 

They got to work building applications, releasing LisaWrite, LisaCalc, LisaDraw, LisaGraph, LisaGuide, LisaList, LisaProject, and LisaTerminal. They translated it to British English, French, German, Italian, and Spanish. 

All the pieces were starting to fall into place. But the project kept growing. And delays. Jobs got booted from the Lisa project amidst concerns it was bloated, behind schedule, wasting company resources, and that Jobs’ perfectionism was going to result in a product that could never ship. The cost of the machine was over $10,000. 

Thing is, as we’ll get into later, every project went over budget and ran into delays for the next decade. Great ideas could then be capitalized on by others - even if a bit watered down. Some projects need to teach us how not to do projects - improve our institutional knowledge about the project or product discipline. That didn’t exactly happen with Lisa. 

We see times in the history of computing and technology for that matter, when a product is just too far advanced for its time. That would be the Xerox Alto. As costs come down, we can then bring ideas to a larger market. That should have been the Lisa. But it wasn’t. While nearly half the cost of a Xerox Star, less than half the number of units were sold.

Following the release of the Lisa, we got other desktop metaphors and graphical interfaces. Agat out of the Soviet Union, SGI, Visi (makers of Visicalc), GEM from Digital Research, DeskMate from Tandy, Amiga Intuition, Acorn Master Compact, the Arthur for the ARM, and the initial releases of Microsoft Windows. By the late 1980s the graphical interface was ubiquitous and computers were the easiest to use for the novice than they’d ever been before. 

But developers didn’t flock to the system as they’d done with the Apple II. You needed a specialized development workstation so why would they? People didn’t understand the menuing system yet. As someone who’s written command line tools, sometimes they’re just easier than burying buttons in complicated graphical interfaces. 

“I’m not dead yet… just… badly burned. Or sick, as it were.” Apple released the Lisa 2 in 1984. It went for about half the price and was a little more stable. One reason was that the Twiggy disk drives Apple built for the Lisa were replaced with Sony microfloppy drives. This looked much more like what we’d get with the Mac, only with expansion slots. 

The end of the Lisa project was more of a fizzle. After the original Mac was released, Lisa shipped as the Macintosh XL, for $4,000. Sun Remarketing built MacWorks to emulate the Macintosh environment and that became the main application of the Macintosh XL. 

Sun Remarketing bought 5,000 of the Mac XLs and improved them somewhat. The last of the 2,700 Lisa computers were buried in a landfill in Utah in 1989. As the whole project had been, they ended up being a write-off. Apple traded them out for a deep discount on the Macintosh Plus. By then, Steve Jobs was long gone, Apple was all about the Mac and the next year General Magic would begin ushering in the era of mobile devices. 

The Lisa was a technical marvel at the time and a critical step in the evolution of the desktop metaphor, then nearly twenty years old, beginning at Stanford on NASA and ARPA grants, evolving further at PARC when members of the team went there, and continuing on at Apple. The lessons learned in the Lisa project were immense and helped inform the evolution of the next project, the Mac. But might the product have actually gained traction in the market if Steve Jobs had not been telling people within Apple and outside that the Mac was the next thing, while the Apple II line was still accounting for most of the revenue of the company? There’s really no way to tell. The Mac used a newer Motorola 68000 at nearly 8 megahertz so was faster, the OS was cleaner, the machine was prettier. It was smaller, boxier like the newer Japanese cars at the time. It was just better. But it probably couldn’t have been if not for the Lisa.

Lisa was slower than it was supposed to be. The operating system tended to be fragile. There were recalls. Steve Jobs was never afraid to cannibalize a product to make the next awesome thing. He did so with Lisa. If we step back and look at the Lisa as an R&D project, it was a resounding success. But as a public company, the shareholders didn’t see it that way at the time. 

So next time there’s an R&D project running amuck, think about this. The Lisa changed the world, ushering in the era of the graphical interface. All for the low cost of $50 million after sales of the device are taken out of it. But they had to start anew with the Mac and only bring in the parts that worked. They built out too much technical debt while developing the product to do anything else. While it can be painful - sometimes it’s best to start with a fresh circuit board and a blank command line editor. Then we can truly step back and figure out how we want to change the world.


The Adventures of Connectix Guy

    RetroMacCast 1/31/2021

James & John discuss eBay Finds: Macintosh TV, Color Classic, and Macintosh 128k. They look back at MacAddict from January 2001, and news includes Apple car rumors, G5 Minecraft server, and more NanoRaptor creations. Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


My Atari by Suzanne Ciani

    ANTIC The Atari 8-bit Podcast 1/30/2021

ANTIC Special Episode: My Atari by Suzanne Ciani
 
Over the years many of the people I've interviewed have generously sent me all different kinds of historical Atari material — including source code, schematics, documentation, books and articles, and design documents — and allowed me to share them. This is the first time someone has sent me a professionally produced song they created for Atari.

After I published my interview with Suzanne Ciani, she sent me an email: she had found an unpublished Atari spot in her archives. It's a tune titled "My Atari". She sent it to me and graciously allowed me to share it with you.

She wrote "I don't think it is a final. There are a bunch of mixes. Maybe you could shed some light on this as to whether it was ever used." Well, I'd certainly never heard it before, and don't think it was ever used. I suppose it might have been used internally by Atari, but it wasn't released to the public. Suzanne later said that she believes it was a demo for a campaign, but as far as she knows it was never used. She hasn't found records indicating what year the song was made. My guess is probably between 1981 and 1984.

Lyrics:
I've been to lots of places
There's more I wanna see
And being young is all that's stopping me

Beyond my time I know there's more
A whole world waiting to explore
But I can't seem to get past my back door

But when I sit
At my Atari
I know the world is mine
And the future is my time

When I sit
At my Atari
There's no mountain I can't climb
No adventure I can't find

I know the world is mine
When I sit behind
My Atari

I know the world is mine
I know the world is mine
My Atari
I know the world is mine
I know the world is mine

It's a rockin' tune with a powerful bassline that propels the song forward, but beyond that, the lyrics tell a poignant story of a person who feels ready to explore and conquer the world — but is still too young. Until their time comes, their Atari video game provides an exciting glimpse into a future of exploring the world for themselves. It strikes me sad, but hopeful.

Suzanne sent me several versions of the song, and there doesn't seem to be a definitive final version. Some have differences in length of a few seconds. My untrained ear can't tell any difference between some variations. One is significantly shorter, leaving out some lyrics. Others abruptly stop, due to technical issues during mixing or perhaps because they were meant as insertion edits.

You've heard one of the complete versions. For completionists and the curious, I'll play the other versions she sent me now. I've uploaded high-quality versions of all of these audio files to Internet Archive.

Thank you to Suzanne Ciani for taking the time to recover these files, and for sharing them with me and the world.

"My Atari" audio at Internet Archive

My interview with Suzanne: audio, YouTube, Internet Archive


Apple: The Apple I computer to the ///

    The History of Computing 1/30/2021

I’ve been struggling with how to cover a few different companies, topics, or movements for awhile. The lack of covering their stories thus far has little to do with their impact but just trying to find where to put them in the history of computing. One of the most challenging is Apple. This is because there isn’t just one Apple. Instead there are stages of the company, each with their own place in the history of computers. 

Today we can think of Apple as one of the Big 5 tech companies, which include Amazon, Apple, Google, Facebook, and Microsoft. But there were times in the evolution of the company where things looked bleak. Like maybe they would get gobbled up by another tech company. To oversimplify the development of Apple, we’ll break up their storied ascent into four parts:

  • Apple Computers: This story covers the mid-1970s to mid 1980s and covers Apple rising out of the hobbyist movement and into a gangbuster IPO. The Apple I through III families all centered on one family of chips and took the company into the 90s.
  • The Macintosh: The rise and fall of the Mac covers the introduction of the now-iconic Mac through to the Power Macintosh era. 
  • Mac OS X: This part of the Apple story begins with the return of Steve Jobs to Apple and the acquisition of NeXT, looks at the introduction of the Intel Macs and takes us through to the transition to the Apple M1 CPU.
  • Post PC: Steve Jobs announced the “post PC” era in 2007, and in the coming years the sales of PCs fell for the first time, while tablets, phones, and other devices emerged as the primary means people used devices. 

We’ll start with the early days, which I think of as one of the four key Apple stages of development. And those early days go back far past the days when Apple was hocking the Apple I. They go to high school.

Jobs and Woz

Bill Fernandez and Steve Wozniak built a computer they called “The Cream Soda Computer” in 1970 when Bill was 16 and Woz was 20. It was a crude punch card processing machine built from some parts Woz got from the company he was working for at the time.

Fernandez introduced Steve Wozniak to a friend from middle school because they were both into computers and both had a flare for pranky rebelliousness. That friend was Steve Jobs. 

By 1972, the pranks turned into their first business. Wozniak designed Blue Boxes, initially conceived by Cap’n Crunch John Draper, who got his phreaker name from a whistle in a Cap’n Crunch box that made a tone in 2600 Hz that sent AT&T phones into operator mode. Draper would actually be an Apple employee for a bit. They designed a digital version and sold a few thousand dollars worth. 

Jobs went to Reed College. Wozniak went to Berkely. Both dropped out. 

Woz got a sweet gig at HP designing calculators, where Jobs had worked a summer job in high school.  India to find enlightenment. When Jobs became employee number 40 at Atari, he got Wozniak to help create Breakout. That was the year The Altair 8800 was released and Wozniak went to the first meeting of a little club called the Homebrew Computer Club in 1975 when they got an Altair so the People’s Computer Company could review it. And that was the inspiration. Having already built one computer with Fernandez, Woz designed schematics for another. Going back to the Homebrew meetings to talk through ideas and nerd out, he got it built and proud of his creation, returned to Homebrew with Jobs to give out copies of the schematics for everyone to play with. This was the age of hackers and hobbyists. But that was about to change ever so slightly. 

The Apple I 

Jobs had this idea. What if they sold the boards. They came up with a plan. Jobs sold his VW Microbus and Wozniak sold his HP-65 calculator and they got to work. Simple math. They could sell 50 boards for $40 bucks each and make some cash like they’d done with the blue boxes. But you know, a lot of people didn’t know what to do with the board. Sure, you just needed a keyboard and a television, but that still seemed a bit much. 

Then a little bigger plan - what if they sold 50 full computers. They went to the Byte Shop and talked them into buying 50 for $500. They dropped $20,000 on parts and netted a $5,000 return. They’d go on to sell about 200 of the Apple Is between 1976 and 1977.

It came with a MOS 6502 chip running at a whopping 1 MHz and with 4KB of memory, which could go to 8. They provided Apple BASIC, as most vendors did at the time. That MOS chip was critical. Before it, many used an Intel or the Motorola 6800, which went for $175. But the MOS 6502 was just $25. It was an 8-bit microprocessor designed by a team that Chuck Peddle ran after leaving the 6800 team at Motorola. Armed with that chip at that price, and with Wozniak’s understanding of what it needed to do and how it interfaced with other chips to access memory and peripherals, the two could do something new. 

They started selling the Apple 1 and to quote an ad “the Apple comes fully assembled, tested & burned-in and has a complete power supply on-board, initial set-up is essentially “hassle free” and you can be running in minutes.” This really tells you something about the computing world at the time. There were thousands of hobbyists and many had been selling devices. But this thing had on-board RAM and you could just add a keyboard and video and not have to read LEDs to get output. The marketing descriptions were pretty technical by modern Apple standards, telling us something of the users. It sold for $666.66.

They got help from Patty Jobs building logic boards. Jobs’ friend from college Daniel Kottke joined for the summer, as did Fernandez and Chris Espinosa - now Apple’s longest-tenured employee. It was a scrappy garage kind of company. The best kind. 

They made the Apple I until a few months after they released the successor. But the problem with the Apple I was that there was only one person who could actually support it when customers called: Wozniak. And he was slammed, busy designing the next computer and all the components needed to take it to the mass market, like monitors, disk drives, etc. So they offered a discount for anyone returning the Apple I and destroyed most returned. Those Apple I computers have now been auctioned for hundreds of thousands of dollars all the way up to $1.75 million. 

The Apple II

They knew they were on to something. But a lot of people were building computers. They needed capital if they were going to bring in a team and make a go at things. But Steve Jobs wasn’t exactly the type of guy venture capitalists liked to fund at the time.

Mike Markkula was a product-marketing manager at chip makers Fairchild and Intel who retired early after making a small fortune on stock options. That is, until he got a visit from Steve Jobs. He brought money but more importantly the kind of assistance only a veteran of a successful corporation who’d ride that wave could bring. He brought in Michael "Scotty" Scott, employee #4, to be the first CEO and they got to work on mapping out an early business plan. If you notice the overlapping employee numbers, Scotty might have had something to do with that…

As you may notice by Wozniak selling his calculator, at the time computers weren’t that far removed from calculators. So Jobs brought in a calculator designer named Jerry Manock to design a plastic injection molded case, or shell, for the Apple II. They used the same chip and a similar enough motherboard design. They stuck with the default 4KB of memory and provided jumpers to make it easier to go up to 48. They added a cassette interface for IO. They had a toggle circuit that could trigger the built-in speaker. And they would include two game paddles. This is similar to bundles provided with the Commodore and other vendors of the day. And of course it still worked with a standard TV - but now that TVs were mostly color, so was the video coming out of the Apple II. And all of this came at a starting price of $1,298.

The computer initially shipped with a version of BASIC written by Wozniak but Apple later licensed the Microsoft 6502 BASIC to ship what they called Applesoft BASIC, short for Apple and Micorosft. Here, they turned to Randy Wiggington who was Apple’s employee #6 and had gotten rides to the Homebrew Computer Club from Wozniak as a teenager (since he lived down the street). He and others added features onto Microsoft BASIC to free Wozniak to work on other projects. Deciding they needed a disk operating system, or DOS. Here, rather than license the industry standard CP/M at the time, Wigginton worked with Shepardson, who did various projects for CP/M and Atari.  

The motherboard on the Apple II remains an elegant design. There were certain innovations that Wozniak made, like cutting down the number of DRAM chips by sharing resources between other components. The design was so elegant that Bill Fernandez had to join them as employee number four, in order to help take the board and create schematics to have it silkscreened.  The machines were powerful.

All that needed juice. Jobs asked his former boss Al Alcorn for someone to help out with that. Rod Holt, employee number 5, was brought in to design the power supply. By implementing a switching power supply, as Digital Equipment had done in the PDP-11, rather than a transformer-based power supply, the Apple II ended up being far lighter than many other machines. 

The Apple II was released in 1977 at the West Coast Computer Fair. It, along with the TRS-80 and the Commodore PET would become the 1977 Trinity, which isn’t surprising. Remember Peddle who ran the 6502 design team - he designed the PET. And Steve Leininger was also a member of the Homebrew Computer Club who happened to work at National Semiconductor when Radio Shack/Tandy started looking for someone to build them a computer. 

The machine was stamped with an Apple logo. Jobs hired Rob Janoff, a local graphic designer, to create the logo. This was a picture of an Apple made out of a rainbow, showing that the Apple II had color graphics. This rainbow Apple stuck and became the logo for Apple Computers until 1998, after Steve Jobs returned to Apple, when the Apple went all-black, but the silhouette is now iconic, serving Apple for 45 years and counting.

The computers were an instant success and sold quickly. But others were doing well in the market. Some incumbents and some new. Red oceans mean we have to improve our effectiveness. So this is where Apple had to grow up to become a company. Markkula made a plan to get Apple to $500 million in sales in 10 years on the backs of his $92,000 investment and another $600,000 in venture funding. 

They did $2.7 million dollars in sales in 1977. This idea of selling a pre-assembled computer to the general public was clearly resonating. Parents could use it to help teach their kids. Schools could use it for the same. And when we were done with all that, we could play games on it. Write code in BASIC. Or use it for business. Make some documents in Word Star, spreadsheets in VisiCalc, or use one of the thousands of titles available for the Mac. Sales grew 150x until 1980.

Given that many thought cassettes were for home machines and floppies were for professional machines, it was time to move away from tape. Markkela realized this and had Wozniak design a floppy disk for the Apple II, which went on to be known as the Drive II. Wozniak had experience with disk controllers and studied the latest available. Wozniak again managed to come up with a value engineered design that allowed Apple to produce a good drive for less than any other major vendor at the time. Wozniak would actually later go on to say that it was one of his best designs (and many contemporaries agreed).

Markkula filled gaps as well as anyone. He even wrote free software programs under the name of Johnny Appleseed, a name also used for years in product documentation. He was a classic hacker type of entrepreneur on their behalf, sitting in the guerrilla marketing chair some days or acting as president of the company others, and mentor for Jobs in other days.  

From Hobbyists to Capitalists

Here’s the thing - I’ve always been a huge fan of Apple. Even in their darkest days, which we’ll get to in later episodes, they represented an ideal. But going back to the Apple 1, they were nothing special. Even the Apple II. Osborne, Commodore, Vector Graphics, Atari, and hundreds of other companies were springing up, inspired first by that Altair and then by the rapid drop in the prices of chips. 

The impact of the 1 megahertz barrier and cost of those MOS 6502 chips was profound. The MOS 6502 chip would be used in the Apple II, the Atari 2600, the Nintendo NES, the BBY Micro. And along with the Zylog Z80 and Intel 8080 would spark a revolution in personal computers. Many of those companies would disappear in what we’d think of as a personal computer bubble if there was more money in it. But those that survived, took things to an order of magnitude higher. Instead of making millions they were making hundreds of millions. Many would even go to war in a race to the bottom of prices. And this is where Apple started to differentiate themselves from the rest. 

For starters, due to how anemic the default Altair was, most of the hobbyist computers were all about expansion. You can see it on the Apple I schematics and you can see it in the minimum of 7 expansion slots in the Apple II lineup of computers. Well, all of them except the IIc, marketed as a more portable type of device, with a handle and an RCA connection to a television for a monitor. 

The media seemed to adore them. In an era of JR Ewing of Dallas, Steve Jobs was just the personality to emerge and still somewhat differentiate the new wave of computer enthusiasts. Coming at the tail end of an era of social and political strife, many saw something of themselves in Jobs. He looked the counter-culture part. He had the hair, but this drive. The early 80s were going to be all about the yuppies though - and Jobs was putting on a suit. Many identified with that as well.

Fueled by the 150x sales performance shooting them up to $117M in sales, Apple filed for an IPO, going public in 1980, creating hundreds of millionaires, including at least 40 of their own employees. It was the biggest IPO since Ford in 1956, the same year Steve Jobs was born. The stock was filed at $14 and shot up to $29 on the first day alone, leaving Apple sitting pretty on a $1.778 valuation. 

Scotty, who brought the champagne, made nearly a $100M profit. One of the Venture Capitalists, Arthur Rock, made over $21M on a $57,600 investment. Rock had been the one to convince the Shockley Semiconductor team to found Fairchild, a key turning point in putting silicon into the name of Silicon Valley. When Noyce and Moore left there to found Intel, he was involved. And he would stay in touch with Markkula, who was so enthusiastic about Apple that Rock invested and began a stint on the board of directors at Apple in 1978, often portrayed as the villain in the story of Steve Jobs. But let’s think about something for a moment. Rock was a backer of Scientific Data Systems, purchased by Xerox in 1969, becoming the Xerox 500. Certainly not Xerox PARC and in fact, the anti-PARC, but certainly helping to connect Jobs to Xerox later as Rock served on the board of Xerox.

The IPO Hangover

Money is great to have but also causes problems. Teams get sidetracked trying to figure out what to do with their hauls. Like Rod Holt’s $67M haul that day. It’s a distraction in a time when executional excellence is critical. We have to bring in more people fast, which created a scenario Mike Scott referred to as a “bozo explosion.” Suddenly more people actually makes us less effective. 

Growing teams all want a seat at a limited table. Innovation falls off as we rush to keep up with the orders and needs of existing customers. Bugs, bigger code bases to maintain, issues with people doing crazy things. 

Taking our eyes off the ball and normalizing the growth can be hard. By 1981, Scotty was out after leading some substantial layoffs.  Apple stock was down. A big IPO also creates investments in competitors. Some of those would go on a race to the bottom in price. 

Apple didn’t compete on price. Instead, they started to plan the next revolution, a key piece of Steve Jobs emerging as a household name. They would learn what the research and computer science communities had been doing - and bring a graphical interface and mouse to the world with Lisa and a smaller project brought forward at the time by Jef Raskin that Jobs tried to kill - but one that Markkula not only approved, but kept Jobs from killing, the Macintosh. 

Fernandez, Holt, Wigginton, and even Wozniak just drifted away or got lost in the hyper-growth of the company, as is often the case. Some came back. Some didn’t. Many of us go through the same in rapidly growing companies. 

Next (but not yet NeXT)

But a new era of hackers was on the way. And a new movement as counter to the big computer culture as Jobs. But first, they needed to take a trip to Xerox. In the meantime, the Apple III was an improvement but proved that the Apple computer line had run its course. They released it in 1980 and recalled the first 14,000 machines and never peaked 75,000 machines sold, killing off the line in 1984. A special year. 


- Does "ease of use" matter for hobbyists? ; Software Devel w/ CoCoPi ; Review of CoCoSDC Explorer

    The CoCo Crew Podcast 1/28/2021

Episode 68 Show Notes -- http://cococrew.org/cococrew-podcast-68.html


Electric Ping-Pong

    Advent of Computing 1/25/2021

Sometimes an idea is so good it keeps showing up. Electronic ping-pong games are one of those ideas. The game was independently invented at least twice, in 1958 and then in 1966. But, here's the thing, PONG didn't come around until the 70s. What were theses earlier tennis games? Did Atari steel the idea for their first hit? Today we go on an analog journey to find some answers.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


ANTIC Interview 403 - Dan Kramer, Atari Trak-Ball Controllers

    ANTIC The Atari 8-bit Podcast 1/23/2021

Dan Kramer, Atari Trak-Ball Controllers

Dan Kramer worked at Atari from 1980 to 1984 in the consumer engineering group where he created products for the home computers and home video games. He championed the creation of the Trak-Ball accessories for the Atari game consoles and computers, and received a patent for his digital-to-analog interface for the Atari 5200 trak-ball. He also worked on the French (SECAM) version of the Atari XL computers, the Atari 2700, and various other projects.

This interview took place on December 18, 2020.

Playing Catch-Up: Dan Kramer (2005 interview): https://www.gamasutra.com/view/news/97175/Playing_CatchUp_Dan_Kramer.php

Patent: Digital-analog conversion for shaft encoders: https://patents.justia.com/patent/4496936

Video version of this interview at YouTube: https://youtu.be/l0E6BCrhka0


folklore.org - Macintosh Launch Day 3-Pack (1984)

    Mac Folklore Radio 1/22/2021

Happy Birthday, Macintosh! Andy Hertzfeld and company rush to complete the first release of the Macintosh system software, then cobble together a demo before launch day.

Original text at folklore.org: Real Artists Ship, It Sure Is Great To Get Out of That Bag, and The Times They Are A-Changin’

Make your own four-voice 256-byte wavetable music, sine wavey or otherwise, with ConcertWare or MusicWorks.

Andy Hertzfeld “six person hours of testing” quote from his 2005 NerdTV interview. (video, transcript)

The entire January 24th, 1984 Apple Shareholders Meeting on YouTube.

Try Software Automatic Mouth in your browser or Macintalk in Mini vMac.

A Macintalk mini-documentary.


A Steampunk's Guide To Clockworks: From The Cradle Of Civilization To Electromechanical Computers

    The History of Computing 1/21/2021

We mentioned John Locke in the episode on the Scientific Revolution. And Leibniz. They not only worked in the new branches of science, math, and philosophy, but they put many of their theories to use and were engineers. 

Computing at the time was mechanical, what we might now think of as clockwork. And clockwork was starting to get some innovative new thinking. As we’ve covered, clockworks go back thousands of years. But with a jump in more and more accurate machining and more science, advances in timekeeping were coming. Locke and Huygens worked on pendulum clocks and then moved to spring driven clocks. Both taught English patents and because they didn’t work that well, neither were granted. But more somethings needed to happen to improve the accuracy of time. 

Time was becoming increasingly important. Not only to show up to appointments and computing ever increasing math problems but also for navigation. Going back to the Greeks, we’d been estimating our position on the Earth relative to seconds and degrees. And a rapidly growing maritime power like England at the time needed to use clocks to guide ships. Why?

The world is a sphere. A sphere has 360 degrees which multiplied by 60 minutes is 21,600. The North South circumference is 21603 nautical miles. Actually the world isn’t a perfect sphere so the circumference around the equator is 21,639 nautical miles. Each nautical mile is 6,076 feet. When traveling by sea, trying to do all that math in feet and inches is terribly difficult and so we came up with 180 lines each of latitude, running east-west and longitude running north-south. That’s 60 nautical miles in each line, or 60 minutes. The distance between each naturally goes down as one gets closer to the poles - and goes down a a percentage relative to the distance to those poles. Problem was that the most accurate time to check your position relative to the sun was at noon or to use the Polaris North Star at night.

Much of this went back to the Greeks and further. The Sumerians developed the sexagesimal system, or base 60 and passed it down to the Babylonians in the 3rd millennium BCE and by 2000 BCE gave us the solar year and the sundial. As their empire grew rich with trade and growing cities by 1500 BCE the Egyptians had developed the first water clocks timers, proved by the Karnak water clock, beginning as a controlled amount of water filling up a vessel until it reached marks. Water could be moved - horizontal water wheels were developed as far back as the 4th millennium BCE. 

Both the sundial and the water clock became more precise in the ensuing centuries, taking location and the time of the year into account. Due to water reacting differently in various climates we also got the sandglass, now referred to as the hourglass. 

The sundial became common in Greece by the sixth century BCE, as did the water clock, which they called the clepsydra. By then it had a float that would tell the time. Plato even supposedly added a bowl full of balls to his inflow water clock that would dump them on a copper plate as an alarm during the day for his academy. 

We still use the base 60 scale and the rough solar years from even more ancient times. But every time sixty seconds ticks by something needs to happen to increment a minute and every 60 minutes needs to increment an hour. From the days of Thales in the 600s BCE and earlier, the Greeks had been documenting and studying math and engineering. And inventing. All that gathered knowledge was starting to come together.

Ctesibius was potentially the first to head the Library of Alexandria and while there, developed the siphon, force pumps, compressed air, and so the earliest uses of pneumatics. He is accredited for adding a scale and float thus mechanics. And expanding the use to include water powered gearing that produced sound and moved dials with wheels.

The Greek engineer Philo of Byzantium in the 240s BCE, if not further back, added an escapement to the water clock. He started by simply applying a counterweight to the end of a spoon and as the spoon filled, a ball was released. He also described a robotic maid who, when Greeks put a cup in her hand, poured wine. 

Archimedes added the idea that objects displaced water based on their volume but also mathematical understanding of the six simple machines. He then gets credited for being the first to add a gear to a water clock. We now have gears and escapements. Here’s a thought, given their lifetimes overlapping, Philo, Archimedes, and Ctesibius could have all been studying together at the library. Archimedes certainly continued on with earlier designs, adding a chime to the early water clocks. And Archimedes is often credited for providing us with the first transmission gears.

The Antikythera device proves the greeks also made use of complex gearing. Transferring energy in more complex gearing patterns. It is hand cranked but shows mathematical and gearing mastery by choosing a day and year and seeing when the next eclipse and olympiad would be. And the Greeks were all to happy to use gearing for other devices, such as an odometer in the first century BCE and to build the Tower of the Winds, an entire building that acted as a detailed and geared water clock as well as perhaps a model of the universe. 

And we got the astrolabe at the same time, from Apollonius or Hipparchus. But a new empire had risen. The astrolabe was a circle of metal with an arm called an alidade that users sighted to the altitude of a star and based on that, you could get your location. The gearing was simple but the math required to get accurate readings was not. These were analog computers of a sort - you gave them an input and they produced an output. At this point they were mostly used by astronomers and continued to be used by Western philosophers at least until the Byzantines.

The sundial, water clocks, and many of these engineering concepts were brought to Rome as the empire expanded, many from Greece. The Roman Vitruvius is credited with taking that horizontal water wheel and flipping it vertical in 14 CE. Around the same time, Augustus Caesar built a large sundial in Campus Martius. The Romans also added a rod to cranks giving us sawmills in the third century. The larger the empire the more time people spent in appointments and the more important time became - but also the more people could notice the impact that automata had. Granted much of it was large, like a windmill at the time, but most technology starts huge and miniaturizes as more precision tooling becomes available to increasingly talented craftspeople and engineers. 

Marcus Vitruvius Pollio was an architect who wrote 10 books in the 20s BCE about technology. His works link aqueducts to water-driven machinations that could raise water from mines, driven by a man walking on a wheel above ground like a hamster does today but with more meaning. They took works from the Hellenistic era and put them in use on an industrial scale. This allowed them to terraform lands and spring new cities into existence. Sawing timber with mills using water to move saws allowed them to build faster. And grinding flour with mills allowed them to feed more people.

Heron of Alexandria would study and invent at the Library of Alexandria, amongst scrolls piled to the ceilings in halls with philosophers and mechanics. The inheritor of so much learning, he developed vending machines, statues that moved, and even a steam engine. If the Greeks and early Roman conquered of Alexandria could figure out how a thing work, they could automate it. 

Many automations were to prove the divine. Such as water powered counterweights to open doors when priests summoned a god, and blew compressed air through trumpets. He also used a wind mill to power an organ and a programmable cart using a weight to turn a drive axle. He also developed an omen machine, with ropes and pulleys on a gear that caused a bird to sing, the song driven by a simple whistle being lowered into water. His inventions likely funding more and more research. 

But automations in Greek times were powered by natural forces, be it hand cranked, fire, or powered by water. Heron also created a chain driven automatic crossbow, showing the use of a chain-driven machine and he used gravity to power machines, automating devices as sand escaped from those sand glasses.

He added pegs to pulleys so the distance travelled could be programmed. Simple and elegant machines. And his automata extended into the theater. He kept combining simple machines and ropes and gravity into more and more complex combinations, getting to the point that he could run an automated twenty minute play. Most of the math and mechanics had been discovered and documented in the countless scrolls in the Library of Alexandria. 

And so we get the term automated from the Greek word for acting of oneself. But automations weren’t exclusive to the Greeks. By the time Caligula was emperor of the Roman Empire, bronze valves could be used to feed iron pipes in his floating ships that came complete with heated floors. People were becoming more and more precise in engineering and many a device was for telling time. The word clock comes from Latin for bell or clogga. I guess bells should automatically ring at certain times. Getting there...

Technology spreads or is rediscovered. By Heron the Greeks and Romans understood steam, pistons, gears, pulleys, programmable automations, and much of what would have been necessary for an industrial or steampunk revolution. But slaves were cheap and plentiful in the empire. The technology was used in areas where they weren’t. Such as at Barbegal to feed Arles in modern France, the Romans had a single hillside flour grinding complex with automated hoppers, capable of supplying flour to thousands of Romans. Constantine, the first Christian Roman emperor, was based there before founding Constantinople.

And as Christianity spread, the gimmicks that enthralled the people as magic were no longer necessary. The Greeks were pagans and so many of their works would be cleansed or have Christian writings copied over them. Humanity wasn’t yet ready. Or so we’ve been led to believe. 

The inheritors of the Roman Empire were the Byzantines, based where Europe meets what we now think of as the Middle East. We have proof of geared portable sundials there, fewer gears but showing evidence of the continuation of automata and the math used to drive it persisting in the empire through to the 400s. And maybe confirming written accounts that there were automated lions and thrones in the empire of Constantinople. And one way geared know-how continued and spread was along trade routes which carried knowledge in the form of books and tradespeople and artifacts, sometimes looted from temples. One such trade route was the ancient Silk Road (or roads).

Water clocks were being used in Egypt, Babylon, India, Persia, Greece, Rome, and China. The Tang Dynasty in China took or rediscovered the escapement to develop a water powered clockwork escapement in the 700s and then in the Song Dynasty developed astronomical clock towers in the 900s. By now the escapements Su Sung is often credited for the first mechanical water clock in 1092. And his Cosmic Engine would mark the transition from water clocks to fully mechanical clocks, although still hydromechanical. The 1100s saw Bhoja in the Paramara dynasty of India emerge as a patron of the arts and sciences and write a chapter on mechanical bees and birds. These innovations could have been happening in a vacuum in each - or word and works could have spread through trade. 

That technology disappeared in Europe, such as plumbing in towns that could bring tap water to homes or clockworks, as the Roman Empire retreated. The specialists and engineers lacked the training to build new works or even maintain many that existed in modern England, France, and Germany. But the heads of rising eastern empires were happy to fund such efforts in a sprint to become the next Alexander. And so knowledge spread west from Asia and was infused with Greek and Roman knowhow in the Middle East during the Islamic conquests. The new rulers expanded quickly, effectively taking possession of Egypt, Mesopotamia, parts of Asia, the Turkish peninsula, Greece, parts of Southern Italy, out towards India, and even Spain. In other words, all of the previous centers of science. And they were tolerant, not looking to convert conquered lands to Islam. This allowed them to learn from their subjects in what we now think of as the Arabic translation movement in the 7th century when Arabic philosophers translated but also critiqued and refined works from the lands they ruled.

This sparked the Muslim golden age, which became the new nexus of science at the time. Over time we saw the Seljuks, ruling out of Baghdad, and Abbasids as Islamic empires who funded science and philosophy. They brought caravans of knowledge into their capitals. The Abbasids even insisted on a specific text from Ptolemy (the Almagest) when doing a treaty so they could bring it home for study. They founding of schools of learning known as Madrasas in every town. This would be similar to a university system today.

Over the centuries following, they produced philosophers like Muhammad Ibn Musa Al-Khwarizmi, who solved quadratic equations, giving us algebra. This would become important to make clockwork devices became more programmable (and for everything else algebra is great at helping with). They sent clockworks as gifts, such as a brass automatic water clock sent to Charlemagne between 802 and 807, complete with chimes. Yup, the clogga rang the bell.

They went far past where Heron left off though. There was Ibn-Sina, Al-Razi, Al-Jazari, Al Kindi, Thābit ibn Qurra, Ridwan, and countless other philosophers carrying on the tradition. The philosophers took the works of the Greeks, copied, and studied them. They evolved the technology to increasing levels of sophistication. And many of the philosophers completed their works at what might be considered the Islamic version of the Library of Alexandria, The House of Wisdom in Baghdad. In fact, when Baghdad was founded about 50 miles north of ancient Babylon, the Al-Mansur Palace Library was part of the plan  and over subsequent Caliphs was expanded adding an observatory that would then be called the House of Wisdom.

The Banu Musa brothers worked out of there and wrote twenty books including the first Book of Ingenious Devices. Here, they took the principles the Greeks and others had focused on and got more into the applications of those principles. On the way to their compilation of devices, they translated books from other authors, including A Book on Degrees on the Nature of Zodiacal Signs from China and Greek works.The three brothers combined pneumatics and aerostatics. They added plug valves, taps, float valves, and conical valves. They documented the siphon and funnel for pouring liquids into the machinery and thought to put a float in a chamber to turn what we now think of as the first documented crank shaft. We had been turning circular motion into linear motion with wheels, but we were now able to turn linear motion into circular motion as well.

They used all of this to describe in engineering detail, if not build and invent, marvelous fountains. Some with multiple jets alternating. Some were wind powered and showed worm-and-pinion gearing.  

Al-Biruni, around the turn of the first millennia, came out of modern Uzbekistan and learned the ancient Indian Sanskrit, Persian, Hebrew, and Greek. He wrote 95 books on astronomy and math. He studied the speed of light vs speed of sound, the axis of the earth and applied the scientific method to statics and mechanics. This moved theories on balances and weights forward. He produced geared mechanisms that are the ancestor of modern astrolabes. 

The Astrolabe was also brought to the Islamic world. Muslim astronomers added newer scales and circles. As with in antiquity, they used it in navigation but they had another use, to aid in prayer by showing the way to Mecca. 

Al-Jazari developed a number of water clocks and is credited with others like developed by others due to penning another Book of Knowledge of Ingenious Mechanical Devices. Here, he describes a camshaft, crank dive and reciprocating pumps, two way valves, and expanding on the uses of pneumatic devices. He developed programmable humanoid robots in the form of automatic musicians on a boat. These complex automata included cams and pegs, similar to those developed by Heron of Alexandria, but with increasing levels of sophistication, showing we were understanding the math behind the engineering and it wasn’t just trial and error.

All golden ages must end. Or maybe just evolve and migrate. Fibonacci and Bacon quoted then, showing yet another direct influence from multiple sources around the world flowing into Europe following the Holy Wars. 

Pope Urban II began inspiring European Christian leaders to wage war against the Muslims in 1095. And so the Holy Wars, or Crusades would begin and rage until 1271. Here, we saw manuscripts copied and philosophy flow back into Europe. Equally as important, Muslim Caliphates in Spain and Sicily and trade routes. And another pair of threats were on the rise. The plague and the Mongols. 

The Mongol invasions began in the 1200s and changed the political makeup of the known powers of the day. The Mongols sacked Baghdad and burned the House of Wisdom. After the mongols and Mughals, the Islamic Caliphates had warring factions internally, the empires fractured, and they turned towards more dogmatic approaches. The Ottomon empire rose and would last until World War I, and while they continued to sponsor scientists and great learners, the nexus of scientific inquiry and the engineering that inspired shifted again and the great works were translated with that shift, including into Latin - the language of learning in Europe. By 1492 the Moors would be kicked out of Spain. That link from Europe to the Islamic golden age is a critical aspect of the transfer of knowledge.

The astrolabe was one such transfer. As early as the 11th century, metal astrolabes arrive in France over the Pyrenees to the north and to the west to Portugal . By the 1300s it had been written about by Chaucer and spread throughout Europe. Something else happened in the Iberian peninsula in 1492. Columbus sailed off to discover the New World. He also used a quadrant, or a quarter of an astrolabe. Which was first written about in Ptolemy’s Almagest but later further developed at the House of Wisdom as the sine quadrant. 

The Ottoman Empire had focused on trade routes and trade. But while they could have colonized the New World during the Age of Discovery, they didn’t. The influx of wealth coming from the Americas caused inflation to spiral and the empire went into a slow decline over the ensuing centuries until the Turkish War of Independence, which began in 1919. 

In the meantime, the influx of money and resources and knowledge from the growing European empires saw clockworks and gearing arriving back in Europe in full force in the 14th century. 

In 1368 the first mechanical clock makers got to work in England. Innovation was slowed due to the Plague, which destroyed lives and property values, but clockwork had spread throughout Europe. The Fall of Constantinople to the Ottomons in 1453 sends a wave of Greek Scholars away from the Ottoman Empire and throughout Europe. Ancient knowledge, enriched with a thousand years of Islamic insight was about to meet a new level of precision metalwork that had been growing in Europe.

By 1495, Leonardo da Vinci showed off one of the first robots in the world -  a knight that could sit, stand, open its visor independently. He also made a robotic lion and repeated experiments from antiquity on self driving carts. And we see a lot of toys following the mechanical innovations throughout the world. Because parents. 

We think of the Renaissance as coming out of Italy but scholars had been back at it throughout Europe since the High Middle Ages. By 1490, a locksmith named Peter Hele is credited for developing the first mainspring in Nurnburg. This is pretty important for watches. You see, up to this point nearly every clockwork we’ve discussed was powered by water or humans setting a dial or fire or some other force. The mainspring stores energy as a small piece of metal ribbon is twisted around an axle, called an abror, into a spiral and then wound tighter and tighter, thus winding a watch. 

The mainspring drove a gear train of increasingly smaller gears which then sent energy into the escapement but without a balance wheel those would not be terribly accurate just yet. But we weren’t powering clocks with water.

At this point, clocks started to spread as expensive decorations, appearing on fireplace mantles and on tables of the wealthy. These were not small by any means. But Peter Henlein would get the credit in 1510 for the first real watch, small enough to be worn as a necklace.

By 1540, screws were small enough to be used in clocks allowing them to get even smaller. The metals for gears were cut thinner, clock makers and toy makers were springing up all over the world. And money coming from speculative investments in the New World was starting to flow, giving way to fuel even more investment into technology.

Jost Burgi invented the minute hand in 1577. But as we see with a few disciplines he decided to jump into, Galileo Galilei has a profound impact on clocks. Galileo documents the physics of the pendulum in 1581 and the center of watchmaking would move to Geneva later in that decade. Smaller clockworks spread with wheels and springs but the 1600s would see an explosion in hundreds of different types of escapements and types of gearing.  He designed an escapement for a pendulum clock but died before building it. 

1610 watches got glass to protect the dials and 1635 French inventor Paul Viet Blois added enamel to the dials. Meanwhile, Blaise Pascal developed the Pascaline in 1642, giving the world the adding machine.

But it took another real scientist to pick up Galileo’s work and put it into action to propel clocks forward. To get back to where we started, a golden age of clockwork was just getting underway. In 1657 Huygens created a clock driven by the pendulum, which by 1671 would see William Clement add the suspension spring and by 1675 Huygens would give us the balance wheel, mimicking the back and forth motion of Galileo’s pendulum. The hairspring, or balance spring, then controlled the speed making it smooth and more accurate. And the next year, we got the concentric minute hand.

I guess Robert Hooke gets credit for the anchor escapement, but the verge escapement had been in use for awhile by then. So who gets to claim inventing some of these devices is debatable. Leibniz then added a stepped reckoner to the mechanical calculator in 1672 going from adding and subtracting to multiplication and division. Still calculating and not really computing as we’d think of it today.

At this point we see a flurry of activity in a proton-industrial revolution. Descartes puts forth that bodies are similar to complex machines and that various organs, muscles, and bones could be replaced with gearing similar to how we can have a hip or heart replaced today. Consider this a precursor to cybernetics. We see even more mechanical toys for the rich - but labor was still cheap enough that automation wasn’t spreading faster. 

And so we come back to the growing British empire. They had colonized North America and the empire had grown wealthy. They controlled India, Egypt, Ireland, the Sudan, Nigeria, Sierra Leone, Kenya, Cyprus, Hong Kong, Burma, Australia, Canada, and so much more. And knowing the exact time was critical for a maritime empire because we wouldn’t get radar until World War II. 

There were clocks but still, the clocks built had to be corrected at various times, based on a sundial. This is because we hadn’t yet gotten to the levels of constant power and precise gearing and the ocean tended to mess with devices. The growing British Empire needed more reliable ways than those Ptolemy used to tell time. And so England would offer prizes ranging from 10,000 to 20,000 pounds for more accurate ways to keep time in the Maritime Act in 1714. Crowdsourcing.

It took until the 1720s. George Graham, yet another member of the Royal Society, picked up where Thomas Tompion left off and added a cylinder escapement to watches and then the deadbeat escapement. He chose not to file patents for these so all watch makers could use them. He also added mercurial compensation to pendulum clocks. And John Harrison added the grid-iron compensation pendulum for his H1 marine chronometer. And George Graham added the cylinder escapement. 

1737 or 1738 sees another mechanical robot, but this time Jacques de Vaucanson brings us a duck that can eat, drink, and poop. But that type of toy was a one-off. Swiss Jaquet-Droz built automated dolls that were meant to help sell more watches, but here we see complex toys that make music (without a water whistle) and can even write using programmable text. The toys still work today and I feel lucky to have gotten to see them at the Museum of Art History in Switzerland. Frederick the Great became entranced by clockwork automations. Magicians started to embrace automations for more fantastical sets. 

At this point, our brave steampunks made other automations and their automata got cheaper as the supply increased. By the 1760s Pierre Le Roy and Thomas Earnshaw invented the temperature compensated balance wheel. Around this time, the mainspring was moved into a going barrel so watches could continue to run while the mainspring was being wound. Many of these increasingly complicated components required a deep understanding of the math about the simple machine going back to Archimedes but with all of the discoveries made in the 2,000 years since. 

And so in 1785 Josiah Emery made the lever escapement standard. The mechanical watch fundamentals haven’t changed a ton in the past couple hundred years (we’ll not worry about quartz watches here). But the 1800s saw an explosion in new mechanical toys using some of the technology invented for clocks. Time brings the cost of technology down so we can mass produce trinkets to keep the kiddos busy.  This is really a golden age of dancing toys, trains, mechanical banks, and eventually bringing in spring-driven wind-up toys. 

Another thing happened in the 1800s. With all of this knowhow on building automations, and all of this scientific inquiry requiring increasingly complicated mathematics, Charles Babbage started working on the Difference Engine in 1822 and then the Analytical Engine in 1837, bringing in the idea of a Jacquard loom punched card. The Babbage machines would become the precursor of modern computers, and while they would have worked if built to spec, were not able to be run in his lifetime. 

Over the next few generations, we would see his dream turn into reality and the electronic clock from Frank Hope-Jones in 1895. There would be other innovations such as in 1945 when the National Institute of Standards and technology created the first atomic clock. But in general parts got smaller, gearing more precise, and devices more functional. We’d see fits and starts for mechanical computers, with Percy Ludgate’s Analytical Machine in 1909, the Marchant Calculator in 1918, the electromechanical Enigma in the 1920s, the Polish Enigma double in 1932, the Z1 from Konrad Zuse in 1938, and the Mark 1 Fire Control Computer for the US Navy in the World War II era, when computers went electro-mechanical and electric, effectively ending the era of clockwork-driven machinations out of necessity, instead putting that into what I consider fun tinkerations.

Aristotle dreamed of automatic looms freeing humans from the trappings of repetitive manual labors so we could think. A Frenchman built them. Long before Aristotle, Pre-Socratic Greek legends told of statues coming to life, fire breathing statues, and tables moving themselves. Egyptian statues were also known to have come to life to awe and inspire the people. The philosophers of the Thales era sent Pythagoras and others to Egypt where he studied with Egyptian priests. Why priests? They led ascetic lives, often dedicated to a branch of math or science. And that’s in the 6th century BCE. The Odyssey was written about events from the 8th century BCE. 

We’ve seen time and time again in the evolutions of science that we often understood how to do something before we understood why. The legendary King Solomon and King Mu of the Zhao dynasty are said to have automata, or clockwork, or moving statues, or to have been presented with these kinds of gifts, going back thousands of years. And there is the chance that they were. Since then, we’ve seen a steady advent of this back and forth between engineering and science. 

Sometimes, we understand how to do something through trial and error or random discovery. And then we add the math and science to catch up to it. Once we do understand the science behind a discovery we uncover better ways and that opens up more discoveries. Aristotle’s dream was realized and extended to the point we can now close the blinds, lock the doors, control the lights, build cars, and even now print cars. We mastered time in multiple dimensions, including Newton’s relative time. We mastered mechanics and then the electron and managed to merge the two. We learned to master space, mapping them to celestial bodies. We mastered mechanics and the math behind it.

Which brings us to today. What do you have to do manually? What industries are still run by manual labor? How can we apply complex machines or enrich what those can do with electronics in order to free our fellow humans to think more? How can we make Aristotle proud? One way is to challenge and prove or disprove any of his doctrines in new and exciting ways. Like Newton and then Einstein did. We each have so much to give. I look forward to seeing or hearing about your contributions when its time to write their histories!


Lars Brinkhoff Interview, Preserving ITS

    Advent of Computing 1/18/2021

Lars Brinkhoff has been spearheading the effort to keep the incompatible Timesharing System alive. Today we sit down to talk about the overall ITS restoration project, software preservation, and how emulation can help save the past.

You can find the full restoration project at github: https://github.com/PDP-10/its

And follow Lars on twitter: @larsbrinkhoff


The Macintosh Office

    RetroMacCast 1/17/2021

James & John discuss eBay Finds: Mac icons mug, collection of Steve Jobs magazines, and Chiat/Day newspaper congratulations. James unveils The Macintosh Office, and news includes a tiny all-in-one Macintosh LC, Captain's Quarters II, and NanoRaptor creations.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


Connections: ARPA > RISC > ARM > Apple's M1

    The History of Computing 1/17/2021

Let’s oversimplify something in the computing world. Which is what you have to do when writing about history. You have to put your blinders on so you can get to the heart of a given topic without overcomplicating the story being told. And in the evolution of technology we can’t mention all of the advances that lead to each subsequent evolution. It’s wonderful and frustrating all at the same time. And that value judgement of what goes in and what doesn’t can be tough. 

Let’s start with the fact that there are two main types of processors in our devices. There’s the x86 chipset developed by Intel and AMD and then there’s the RISC-based processors, which are ARM and for the old school people, also include PowerPC and SPARC. Today we’re going to set aside the x86 chipset that was dominant for so long and focus on how the RISC and so ARM family emerged.   

First, let’s think about what the main difference is between ARM and x86. RISC and so ARM chips have a focus on reducing the number of instructions required to perform a task to as few as possible, and so RISC stands for Reduced Instruction Set Computing. Intel, other than the Atom series chips, with the x86 chips has focused on high performance and high throughput. Big and fast, no matter how much power and cooling is necessary. 

The ARM processor requires simpler instructions which means there’s less logic and so more instructions are required to perform certain logical operations. This increases memory and can increase the amount of time to complete an execution, which ARM developers address with techniques like pipelining, or instruction-level parallelism on a processor. Seymour Cray came up with this to split up instructions so each core or processor handles a different one and so Star, Amdahl and then ARM implemented it as well. 

The X86 chips are Complex Instruction Set Computing chips, or CISC. Those will do larger, more complicated tasks, like computing floating point integers or memory searches, on the chip. That often requires more consistent and larger amounts of power.

ARM chips are built for low power. The reduced complexity of operations is one reason but also it’s in the design philosophy. This means less heat syncs and often accounting for less consistent streams of power. This 130 watt x86 vs 5 watt ARM can mean slightly lower clock speeds but the chips can cost more as people will spend less in heat syncs and power supplies. This also makes the ARM excellent for mobile devices. 

The inexpensive MOS 6502 chips helped revolutionize the personal computing industry in 1975, finding their way into the Apple II and a number of early computers. They were RISC-like but CISC-like as well. They took some of the instruction set architecture family from the IBM System/360 through to the PDP, General Nova, Intel 8080, Zylog, and so after the emergence of Windows, the Intel finally captured the personal computing market and the x86 flourished. 

But the RISC architecture actually goes back to the ACE, developed in 1946 by Alan Turing. It wasn’t until the 1970s that Carver Mead from Caltech and Lynn Conway from Xerox PARC saw that the number of transistors was going to plateau on chips while workloads on chips were growing exponentially. ARPA and other agencies needed more and more instructions, so they instigated what we now refer to as the VLSI project, a DARPA program initiated by Bob Kahn to push into the 32-bit world. They would provide funding to different universities, including Stanford and the University of North Carolina. 

Out of those projects, we saw the Geometry Engine, which led to a number of computer aided design, or CAD efforts, to aid in chip design. Those workstations, when linked together, evolved into tools used on the Stanford University Network, or SUN, which would effectively spin out of Stanford as Sun Microsystems. And across the bay at Berkeley we got a standardized Unix implementation that could use the tools being developed in Berkely Software Distribution, or BSD, which would eventually become the operating system used by Sun, SGI, and now OpenBSD and other variants. 

And the efforts from the VLSI project led to Berkely RISC in 1980 and Stanford MIPS as well as the multi chip wafer.The leader of that Berkeley RISC project was David Patterson who still serves as vice chair of the RISC-V Foundation. The chips would add more and more registers but with less specializations. This led to the need for more memory. But UC Berkeley students shipped a faster ship than was otherwise on the market in 1981. And the RISC II was usually double or triple the speed of the Motorola 68000. 

That led to the Sun SPARC and DEC Alpha. There was another company paying attention to what was happening in the RISC project: Acorn Computers. They had been looking into using the 6502 processor until they came across the scholarly works coming out of Berkeley about their RISC project. Sophie Wilson and Steve Furber from Acorn then got to work building an instruction set for the Acorn RISC Machine, or ARM for short. They had the first ARM working by 1985, which they used to build the Acorn Archimedes.

The ARM2 would be faster than the Intel 80286 and by 1990, Apple was looking for a chip for the Apple Newton. A new company called Advanced RISC Machines or Arm would be founded, and from there they grew, with Apple being a shareholder through the 90s. By 1992, they were up to the ARM6 and the ARM610 was used for the Newton. DEC licensed the ARM architecture to develop the StrongARMSelling chips to other companies. Acorn would be broken up in 1998 and parts sold off, but ARM would live on until acquired by Softbank for $32 billion in 2016. Softbank is  currently in acquisition talks to sell ARM to Nvidia for $40 billion. 

Meanwhile, John Cocke at IBM had been working on the RISC concepts since 1975 for embedded systems and by 1982 moved on to start developing their own 32-bit RISC chips. This led to the POWER instruction set which they shipped in 1990 as the RISC System/6000, or as we called them at the time, the RS/6000. They scaled that down to the Power PC and in 1991 forged an alliance with Motorola and Apple. DEC designed the Alpha. It seemed as though the computer industry was Microsoft and Intel vs the rest of the world, using a RISC architecture.

But by 2004 the alliance between Apple, Motorola, and IBM began to unravel and by 2006 Apple moved the Mac to an Intel processor. But something was changing in computing. Apple shipped the iPod back in 2001, effectively ushering in the era of mobile devices. By 2007, Apple released the first iPhone, which shipped with a Samsung ARM. 

You see, the interesting thing about ARM is they don’t fab chips, like Intel - they license technology and designs. Apple licensed the Cortex-A8 from ARM for the iPhone 3GS by 2009 but had an ambitious lineup of tablets and phones in the pipeline. And so in 2010 did something new: they made their own system on a chip, or SoC. Continuing to license some ARM technology, Apple pushed on, getting between 800MHz to 1 GHz out of the chip and using it to power the iPhone 4, the first iPad, and the long overdue second-generation Apple TV. The next year came the A5, used in the iPad 2 and first iPad Mini, then the A6 at 1.3 GHz for the iPhone 5, the A7 for the iPhone 5s, iPad Air. That was the first 64-bit consumer SoC.

In 2014, Apple released the A8 processor for the iPhone 6, which came in speeds ranging from 1.1GHz to the 1.5 GHz chip in the 4th generation Apple TV. By 2015, Apple was up to the A9, which clocked in at 1.85 GHz for the iPhone 6s. Then we got the A10 in 2016, the A11 in 2017, the A12 in 2018, A13 in 2019, A14 in 2020 with neural engines, 4 GPUs, and 11.8 billion transistors compared to the 30,000 in the original ARM. 

And it’s not just Apple. Samsung has been on a similar tear, firing up the Exynos line in 2011 and continuing to license the ARM up to Cortex-A55 with similar features to the Apple chips, namely used on the Samsung Galaxy A21. And the Snapdragon. And the Broadcoms. 

In fact, the Broadcom SoC was used in the Raspberry Pi (developed in association with Broadcom) in 2012. The 5 models of the Pi helped bring on a mobile and IoT revolution. 

And so nearly every mobile device now ships with an ARM chip as do many a device we place around our homes so our digital assistants can help run our lives. Over 100 billion ARM processors have been produced, well over 10 for every human on the planet. And the number is about to grow even more rapidly. Apple surprised many by announcing they were leaving Intel to design their own chips for the Mac. 

Given that the PowerPC chips were RISC, the ARM chips in the mobile devices are RISC, and the history Apple has with the platform, it’s no surprise that Apple is going back that direction with the M1, Apple’s first system on a chip for a Mac. And the new MacBook Pro screams. Even software running in Rosetta 2 on my M1 MacBook is faster than on my Intel MacBook. And at 16 billion transistors, with an 8 core GPU and a 16 core neural engine, I’m sure developers are hard at work developing the M3 on these new devices (since you know, I assume the M2 is done by now). What’s crazy is, I haven’t felt like Intel had a competitor other than AMD in the CPU space since Apple switched from the PowerPC. Actually, those weren’t great days. I haven’t felt that way since I realized no one but me had a DEC Alpha or when I took the SPARC off my desk so I could play Civilization finally. 

And this revolution has been a constant stream of evolutions, 40 years in the making. It started with an ARPA grant, but various evolutions from there died out. And so really, it all started with Sophie Wilson. She helped give us the BBC Micro and the ARM. She was part of the move to Element 14 from Acorn Computers and then ended up at Broadcom when they bought the company in 2000 and continues to act as the Director of IC Design. We can definitely thank ARPA for sprinkling funds around prominent universities to get us past 10,000 transistors on a chip. Given that chips continue to proceed at such a lightning pace, I can’t imagine where we’ll be at in another 40 years. But we owe her (and her coworkers at Acorn and the team at VLSI, now NXP Semiconductors) for their hard work and innovations.


Name Wars

    ANTIC The Atari 8-bit Podcast 1/16/2021

ANTIC Episode 74 - Name Wars

In this episode of ANTIC The Atari 8-bit Computer Podcast… Kevin (er... Kay) and Randy have a name fight and, as usual, we bring you all the Atari 8-bit news that’s fit to print.

READY!

Recurring Links 

Floppy Days Podcast 

AtariArchives.org 

AtariMagazines.com 

Kevin’s Book “Terrible Nerd” 

New Atari books scans at archive.org 

ANTIC feedback at AtariAge 

Atari interview discussion thread on AtariAge 

Interview index: here 

ANTIC Facebook Page 

AHCS 

Eaten By a Grue 

Next Without For 

What We’ve Been Up To

Recent Interviews 

News 

Shows

YouTube videos this month

New at GitHub

New at Archive.org

Feedback

Possible side effects of listening to the Antic podcast include stuffy nose, sneezing, sore throat; drowsiness, dizziness, feeling nervous; mild nausea, upset stomach, constipation; increased appetite, weight changes; insomnia, decreased sex drive, impotence, or difficulty having an orgasm; dry mouth, intense hate of Commodore, and Amiga lust. Certain conditions apply. Offer good for those with approved credit. Member FDIC. An equal housing lender. 


Bob Tayler: ARPA to PARC to DEC

    The History of Computing 1/15/2021

Robert Taylor was one of the true pioneers in computer science. In many ways, he is the string (or glue) that connected the US governments era of supporting computer science through ARPA to innovations that came out of Xerox PARC and then to the work done at Digital Equipment Corporation’s Systems Research Center. Those are three critical aspects of the history of computing and while Taylor didn’t write any of the innovative code or develop any of the tools that came out of those three research environments, he saw people and projects worth funding and made sure the brilliant scientists got what they needed to get things done.

The 31 years in computing that his stops represented were some of the most formative years for the young computing industry and his ability to inspire the advances that began with Vannevar Bush’s 1945 article called “As We May Think” then ended with the explosion of the Internet across personal computers. 

Bob Taylor inherited a world where computing was waking up to large crusty but finally fully digitized mainframes stuck to its eyes in the morning and went to bed the year Corel bought WordPerfect because PCs needed applications, the year the Pentium 200 MHz was released, the year Palm Pilot and eBay were founded, the year AOL started to show articles from the New York Times, the year IBM opened a we web shopping mall and the year the Internet reached 36 million people. Excite and Yahoo went public. Sometimes big, sometimes small, all of these can be traced back to Bob Taylor - kinda’ how we can trace all actors to Kevin Bacon. But more like if Kevin Bacon found talent and helped them get started, by paying them during the early years of their careers… 

How did Taylor end up as the glue for the young and budding computing research industry? Going from tween to teenager during World War II, he went to Southern Methodist University in 1948, when he was 16. He jumped into the US Naval Reserves during the Korean War and then got his masters in psychology at the University of Texas at Austin using the GI Bill. Many of those pioneers in computing in the 60s went to school on the GI Bill. It was a big deal across every aspect of American life at the time - paving the way to home ownership, college educations, and new careers in the trades. From there, he bounced around, taking classes in whatever interested him, before taking a job at Martin Marietta, helping design the MGM-31 Pershing and ended up at NASA where he discovered the emerging computer industry. 

Taylor was working on projects for the Apollo program when he met JCR Licklider, known as the Johnny Appleseed of computing. Lick, as his friends called him, had written an article called Man-Computer Symbiosis in 1960 and had laid out a plan for computing that influenced many. One such person, was Taylor. And so it was in 1962 he began and in 1965 that he succeeded in recruiting Taylor away from NASA to take his place running ARPAs Information Processing Techniques Office, or IPTO. 

Taylor had funded Douglas Engelbart’s research on computer interactivity at Stanford Research Institute while at NASA. He continued to do so when he got to ARPA and that project resulted in the invention of the computer mouse and the Mother of All Demos, one of the most inspirational moments and a turning point in the history of computing. 

They also funded a project to develop an operating system called Multics. This would be a two million dollar project run by General Electric, MIT, and Bell Labs. Run through Project MAC at MIT there were just too many cooks in the kitchen. Later, some of those Bell Labs cats would just do their own thing. Ken Thompson had worked on Multics and took the best and worst into account when he wrote the first lines of Unix and the B programming language, then one of the most important languages of all time, C. 

Interactive graphical computing and operating systems were great but IPTO, and so Bob Taylor and team, would fund straight out of the pentagon, the ability for one computer to process information on another computer. Which is to say they wanted to network computers. It took a few years, but eventually they brought in Larry Roberts, and by late 1968 they’d awarded an RFQ to build a network to a company called Bolt Beranek and Newman (BBN) who would build Interface Message Processors, or IMPs. The IMPS would connect a number of sites and route traffic and the first one went online at UCLA in 1969 with additional sites coming on frequently over the next few years. That system would become ARPANET, the commonly accepted precursor to the Internet. 

There was another networking project going on at the time that was also getting funding from ARPA as well as the Air Force, PLATO out of the University of Illinois. PLATO was meant for teaching and had begun in 1960, but by then they were on version IV, running on a CDC Cyber and the time sharing system hosted a number of courses, as they referred to programs. These included actual courseware, games, convent with audio and video, message boards, instant messaging, custom touch screen plasma displays, and the ability to dial into the system over lines, making the system another early network. 

Then things get weird. Taylor is sent to Vietnam as a civilian, although his rank equivalent would be a brigadier general. He helped develop the Military Assistance Command in Vietnam. Battlefield operations and reporting were entering the computing era. Only problem is, while Taylor was a war veteran and had been deep in the defense research industry for his entire career, Vietnam was an incredibly unpopular war and seeing it first hand and getting pulled into the theater of war, had him ready to leave. This combined with interpersonal problems with Larry Roberts who was running the ARPA project by then over Taylor being his boss even without a PhD or direct research experience. And so Taylor joined a project ARPA had funded at the University of Utah and left ARPA. 

There, he worked with Ivan Sutherland, who wrote Sketchpad and is known as the Father of Computer Graphics, until he got another offer. This time, from Xerox to go to their new Palo Alto Research Center, or PARC. One rising star in the computer research world was pretty against the idea of a centralized mainframe driven time sharing system. This was Alan Kay. In many ways, Kay was like Lick. And unlike the time sharing projects of the day, the Licklider and Kay inspiration was for dedicated cycles on processors. This meant personal computers. 

The Mansfield Amendment in 1973 banned general research by defense agencies. This meant that ARPA funding started to dry up and the scientists working on those projects needed a new place to fund their playtime. Taylor was able to pick the best of the scientists he’d helped fund at ARPA. He helped bring in people from Stanford Research Institute, where they had been working on the oNLineSystem, or NLS. 

This new Computer Science Laboratory landed people like Charles Thacker, David Boggs, Butler Lampson, and Bob Sproul and would develop the Xerox Alto, the inspiration for the Macintosh. The Alto though contributed the very ideas of overlapping windows, icons, menus, cut and paste, word processing. In fact, Charles Simonyi from PARC would work on Bravo before moving to Microsoft to spearhead Microsoft Word.

Bob Metcalfe on that team was instrumental in developing Ethernet so workstations could communicate with ARPANET all over the growing campus-connected environments. Metcalfe would leave to form 3COM. 

SuperPaint would be developed there and Alvy Ray Smith would go on to co-found Pixar, continuing the work begun by Richard Shoup. 

They developed the Laser Printer, some of the ideas that ended up in TCP/IP, and the their research into page layout languages would end up with Chuck Geschke, John Warnock and others founding Adobe. 

Kay would bring us the philosophy behind the DynaBook which decades later would effectively become the iPad. He would also develop Smalltalk with Dan Ingalls and Adele Goldberg, ushering in the era of object oriented programming. 

They would do pioneering work on VLSI semiconductors, ubiquitous computing, and anything else to prepare the world to mass produce the technologies that ARPA had been spearheading for all those years. Xerox famously did not mass produce those technologies. And nor could they have cornered the market on all of them. The coming waves were far too big for one company alone. 

And so it was that PARC, unable to bring the future to the masses fast enough to impact earnings per share, got a new director in 1983 and William Spencer was yet another of three bosses that Taylor clashed with. Some resented that he didn’t have a PhD in a world where everyone else did. Others resented the close relationship he maintained with the teams. Either way, Taylor left PARC in 1983 and many of the scientists left with him. 

It’s both a curse and a blessing to learn more and more about our heroes. Taylor was one of the finest minds in the history of computing. His tenure at PARC certainly saw the a lot of innovation and one of the most innovative teams to have ever been assembled. But as many of us that have been put into a position of leadership, it’s easy to get caught up in the politics. I am ashamed every time I look back and see examples of building political capital at the expense of a project or letting an interpersonal problem get in the way of the greater good for a team. But also, we’re all human and the people that I’ve interviewed seem to match the accounts I’ve read in other books. 

And so Taylor’s final stop was Digital Equipment Corporation where he was hired to form their Systems Research Center in Palo Alto. They brought us the AltaVista search engine, the Firefly computer, Modula-3 and a few other advances. Taylor retired in 1996 and DEC was acquired by Compaq in 1998 and when they were acquired by HP the SRC would get merged with other labs at HP. 

From ARPA to Xerox to Digital, Bob Taylor certainly left his mark on computing. He had a knack of seeing the forest through the trees and inspired engineering feats the world is still wrestling with how to bring to fruition. Raw, pure science. He died in 2017. He worked with some of the most brilliant people in the world at ARPA. He inspired passion, and sometimes drama in what Stanford’s Donald Knuth called “the greatest by far team of computer scientists assembled in one organization.” 

In his final email to his friends and former coworkers, he said “You did what they said could not be done, you created things that they could not see or imagine.” The Internet, the Personal Computer, the tech that would go on to become Microsoft Office, object oriented programming, laser printers, tablets, ubiquitous computing devices. So, he isn’t exactly understating what they accomplished in a false sense of humility. I guess you can’t do that often if you’re going to inspire the way he did. 

So feel free to abandon the pretense as well, and go inspire some innovation. Heck, who knows where the next wave will come from. But if we aren’t working on it, it certainly won’t come.

Thank you so much and have a lovely, lovely day. We are so lucky to have you join us on yet another episode. 


ITS: Open Computing

    Advent of Computing 1/11/2021

Modern operating systems adhere to a pretty rigid formula. They all have users with password-protected accounts and secure files. They all have restrictions to keep programs from breaking stuff. That design has been common for a long time, but that doesn't make it the best solution. In the late 60s ITS, the Incompatible Timesharing System, was developed as a more exciting alternative. ITS was built for hackers to play, there were no passwords, any anyone who could find ITS was welcome to log in.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and bonus content: https://www.patreon.com/adventofcomputing


WordStar

    The History of Computing 1/8/2021

We’ve covered Xerox PARC a few times - and one aspect that’s come up has been the development of the Bravo word processor from Butler Lampson, Charles Simonyi, and team. Simonyi went on to work at Microsoft and spearheaded the development of Microsoft Word. But Bravo was the first WYSIWYG tool for creating documents, which we now refer to as a word processor. That was 1974. 

Something else we’ve covered happened in 1974, the release of the Altair 8800. One aspect of the Altair we didn’t cover is that Michael Shrayer was a tinkerer who bought an Alatir and wrote a program that allowed him to write manuals. This became the Electric Pencil. It was text based though and not a WYSIWYG like Bravo was. It ran in 8k of memory and would be ported to Intel 8080, Zylog Z-80, and other processors over the years leading into the 80s. But let’s step back to the 70s for a bit. Because bell bottoms. 

The Altair inspired a clone called the IMSAI 8080 in 1975. The direct of marketing, Seymour Rubenstein started tinkering with the idea of a word processor. He left IMSAI and by 1978, put together $8,500 and started a company called MicroPro International. He convinced Rob Barnaby, the head programmer at IMSAI, to join him.

They did market research into the tools being used by IBM and Xerox. They made a list of what was needed and got to work. The word processor grew. They released their word processor, which they called WordStar, for CP/M running on the Intel 8080. By then it was 1979 and CP/M was a couple years old but already a pretty dominant operating system for microcomputers. Software was a bit more expensive at the time and WordStar sold for $495.

At the time, you had to port your software to each OS running on each hardware build. And the code was in assembly so not the easiest thing in the world. This meant they wanted to keep the feature set slim so WordStar could run on as many platforms as possible. They ran on the Osborne 1 portable and with CP/M support they became the standard. They could wrap words automatically to the next line.  Imagine that. 

They ported the software to other platforms. It was clear there was a new OS that they needed to run on. So they brought in Jim Fox, who ported WordStar to run on DOS in 1981. They were on top of the world. Sure, there was Apple Write, Word, WordPerfect, and Samna, but WordStar was it.

Arthur C Clarke met Rubenstein and Barnaby and said they "made me a born-again writer, having announced my retirement in 1978, I now have six books in the works, all through WordStar." He would actually write dozens more works. 

They released the third version in 1982 and quickly grew into the most popular, dominant word processor on the market. The code base was getting a little stale and so they brought in Peter Mierau to overhaul it for WordStar 4. The refactor didn’t come at the best of times. In software, you’re the market leader until… You thought I was going to say Microsoft moved into town? Nope, although Word would eventually dominate word processing. But there was one more step before computing got there. 

Next, along with the release of the IBM PC, WordPerfect took the market by storm. They had more features and while WordStar was popular, it was the most pirated piece of software at the time. This meant less money to build features. Like using the MS-DOS keyboard to provide more productivity tools. This isn’t to say they weren’t making money. They’d grown to $72M in revenue by 1984. When they filed for their initial public offering, or IPO, they had a huge share of the word processing market and accounted for one out of every ten dollars spent on software. 

WordStar 5 came in 1989 and as we moved into the 90s, it was clear that WordStar 2000 had gone nowhere so WordStar 6 shipped in 1990 and 7 in 1991. The buying tornado had slowed and while revenues were great, copy-protecting disks were slowing the spread of the software. 

Rubinstein is commonly credited with creating the first end-user software licensing agreement, common with nearly every piece of proprietary software today. Everyone was pirating back then so if you couldn’t use WordStar, move on to something you could steal. You know, like WordPerfect. MultiMate, AmiPro, Word, and so many other tools. Sales were falling. New features weren’t shipping. 

One pretty big one was support for Windows. By the time Windows support shipped, Microsoft had released Word, which had a solid two years to become the new de facto standard. SoftKey would acquire the company in 1994, and go on to acquire a number of other companies until 2002 when they were acquired. But by then WordStar was so far forgotten that no one was sure who actually owned the WordStar brand. 

I can still remember using WordStar. And I remember doing work when I was a consultant for a couple of authors to help them recover documents, which were pure ASCII files or computers that had files in WordStar originally but moved to the WSD extension later. And I can remember actually restoring a BAK file while working at the computer labs at the University of Georgia, common in the DOS days. It was a joy to use until I realized there was something better.

Rubinstein went on to buy another piece of software, a spreadsheet. He worked with another team, got a little help from Barnaby and and Fox and eventually called it Surpass, which was acquired by Borland, who would rename it to Quattro Pro. That spreadsheet borrowed the concept of multiple sheets in tabs from Boeing Calc, now a standard metaphor. Amidst lawsuits with Lotus on whether you could patent how software functions, or the UX of software, Borland sold Lotus to Novell during a time when Novell was building a suite of products to compete with Microsoft.

We can thank WordStar for so much. Inspiring content creators and creative new features for word processing. But we also have to remember that early successes are always going to inspire additional competition. Any company that grows large enough to file an initial public offering is going to face barbarian software vendors at their gates. When those vendors have no technical debt, they can out-deliver features. But as many a software company has learned, expanding to additional products by becoming a portfolio company is one buffer for this. As is excellent execution. 

The market was WordStar’s to lose. And there’s a chance that it was lost the second Microsoft pulled in Charles Simonyi, one of the original visionaries behind Bravo from Xerox PARC. But when you have 10% of all PC software sales it seems like maybe you got outmaneuvered in the market. But ultimately the industry was so small and so rapidly changing in the early 1980s that it was ripe for disruption on an almost annual basis. That is, until Microsoft slowly took the operating system and productivity suite markets and .doc, .xls, and .ppt files became the format all other programs needed to support. 

And we can thank Rubinstein and team for pioneering what we now call the software industry. He started on an IBM 1620 and ended his career with WebSleuth, helping to usher in the search engine era. Many of the practices he put in place to promote WordStar are now common in the industry. These days I talk to a dozen serial entrepreneurs a week. They could all wish to some day be as influential as he. 


RIP Flash | Mini 486 | DOSBox Pure | Nox Archaist

    This Week in Retro 1/7/2021

🏆Your monthly support helps us keep the retro news flowing!

https://www.patreon.com/thisweekinretro

☕Or just buy us a coffee!

https://ko-fi.com/thisweekinretro

Show Notes:

1.Gone in a Flash

https://www-bbc-co-uk.cdn.ampproject.org/v/s/www.bbc.co.uk/news/amp/technology-55497353?amp_js_v=a6&amp_gsa=1&usqp=mq331AQFKAGwASA%3D#csi=0&referrer=https%3A%2F%2Fwww.google.com&amp_tf=From%20%251%24s

2. A mini 486

https://hackaday.com/2020/12/27/retrocomputing-with-modern-hardware-no-emulation-required/

3. A Pure Dos experience

https://hothardware.com/news/dosbox-pure-simplify-retro-pc-gaming-experience

4. Nox Archaist is the new retro Ultima you’ve been waiting for

https://nox-archaist.myshopify.com/collections/games


A weekly roundup of the hottest stories from the world of retro gaming and computing, voted on by you, the listener! Hosted by Neil Thomas from RMC and John Shawler from Amigos Retro Gaming.

Submit your favorite retro stories on TWIR's Subreddit.

https://www.reddit.com/r/thisweekinretro/new

Follow your hosts!

Twitter:

twitter.com/RMCRetro

https://twitter.com/amigosretro

Youtube

https://youtube.com/rmcretro

https://www.youtube.com/amigosretrogaming

Instagram

https://www.instagram.com/rmcretro

Twitch

https://www.twitch.tv/amigosretrogaming



Preserving the Fleeting Now

    Retro Computing Roundtable 1/3/2021

Panelists: Paul Hagstrom (hosting), Quinn Dunki, Earl Evans, Blake Patterson, and Carrington Vanston

Topic: Preserving the Fleeting Now

Things people post, preserving the past, themselves vanish. eBay images, images in blogs that eventually go offline. Respositories like Pinterest morph into something less useful for preservation and searching. Are the things we find and post now going to be there in the future? (And, since no, they're not, what should we be doing?)

Topic/Feedback links:

Retro Computing News:

Vintage Computer-related commercials:

Retro Computing Gift Idea:

Auction Picks:

Feedback/Discussion:

Intro / Closing Song: Back to Oz by John X
Show audio files hosted by CyberEars

Listen/Download:


Holiday Gift Guide

    RetroMacCast 1/3/2021

James & John discuss eBay Finds: Bicycle for the Mind watch, Apple III, and Macintosh IIx. They share holiday gift ideas, and news includes AirPods Max, another clear case Mac prototype, and using a Quadra 700.

Join our Facebook page, watch us on YouTube, and visit us at RetroMacCast.


(OldComputerPods) ©Sean Haas, 2020