'basic' Episodes

BASIC

     11/24/2019

BASIC Welcome to the History of Computing Podcast, where we explore the history of information technology. Because by understanding the past prepares us to innovate the future! Today we’re going to look at the computer that was the history of the BASIC programming language. We say BASIC but really BASIC is more than just a programming language. It’s a family of languages and stands for Beginner’s All-purpose Symbolic Instruction Code. As the name implies it was written to help students that weren’t math nerds learn how to use computers. When I was selling a house one time, someone was roaming around in my back yard and apparently they’d been to an open house and they asked if I’m a computer scientist after they saw a dozen books I’d written on my bookshelf. I really didn’t know how to answer that question We’ll start this story with Hungarian John George Kemeny. This guy was pretty smart. He was born in Budapest and moved to the US with his family in 1940 when his family fled anti-Jewish sentiment and laws in Hungary. Some of his family would go on to die in the Holocaust, including his grandfather. But safely nestled in New York City, he would graduate high school at the top of his class and go on to Princeton. Check this out, he took a year off to head out to Los Alamos and work on the Manhattan Project under Nobel laureate Richard Feynman. That’s where he met fellow Hungarian immigrant Jon Von Neumann - two of a group George Marx wrote about in his book on great Hungarian Emmigrant Scientists and thinkers called The Martians. When he got back to Princeton he would get his Doctorate and act as an assistant to Albert Einstein. Seriously, THE Einstein. Within a few years he was a full professor at Dartmouth and go on to publish great works in mathematics. But we’re not here to talk about those contributions to the world as an all around awesome place. You see, by the 60s math was evolving to the point that you needed computers. And Kemeny and Thomas Kurtz would do something special. Now Kurtz was another Dartmoth professor who got his PhD from Princeton. He and Kemeny got thick as thieves and wrote the Dartmouth Time-Sharing System (keep in mind that Time Sharing was all the rage in the 60s, as it gave more and more budding computer scientists access to those computer-things that prior to the advent of Unix and the PC revolution had mostly been reserved for the high priests of places like IBM. So Time Sharing was cool, but the two of them would go on to do something far more important. In 1956, they would write DARSIMCO, or Dartmouth Simplified Code. As with Pascal, you can blame Algol. Wait, no one has ever heard of DARSIMCO? Oh… I guess they wrote that other language you’re here to hear the story of as well. So in 59 they got a half million dollar grant from the Alfred P. Sloan foundation to build a new department building. That’s when Kurtz actually joined the department full time. Computers were just going from big batch processed behemoths to interactive systems. They tried teaching with DARSIMCO, FORTRAN, and the Dartmouth Oversimplified Programming Experiment, a classic acronym for 1960s era DOPE. But they didn’t love the command structure nor the fact that the languages didn’t produce feedback immediately. What was it called? Oh, so in 1964, Kemeny wrote the first iteration of the BASIC programming language and Kurtz joined him very shortly thereafter. They did it to teach students how to use computers. It’s that simple. And as most software was free at the time, they released it to the public. We might think of this as open source-is by todays standards. I say ish as Dartmouth actually choose to copyright BASIC. Kurtz has said that the name BASIC was chosen because “We wanted a word that was simple but not simple-minded, and BASIC was that one.” The first program I wrote was in BASIC. BASIC used line numbers and read kinda’ like the English language. The first line of my program said 10 print “Charles was here” And the computer responded that “Charles was here” - the second program I wrote just added a second line that said: 20 goto 10 Suddenly “Charles was here” took up the whole screen and I had to ask the teacher how to terminate the signal. She rolled her eyes and handed me a book. And that my friend, was the end of me for months. That was on an Apple IIc. But a lot happened with BASIC between 1964 and then. As with many technologies, it took some time to float around and evolve. The syntax was kinda’ like a simplified FORTRAN, making my FORTRAN classes in college a breeze. That initial distribution evolved into Dartmouth BASIC, and they received a $300k grant and used student slave labor to write the initial BASIC compiler. Mary Kenneth Keller was one of those students and went on to finish her Doctorate in 65 along with Irving Tang, becoming the first two PhDs in computer science. After that she went off to Clarke College to found their computer science department. The language is pretty easy. I mean, like PASCAL, it was made for teaching. It spread through universities like wildfire during the rise of minicomputers like the PDP from Digital Equipment and the resultant Data General Nova. This lead to the first text-based games in BASIC, like Star Trek. And then came the Altair and one of the most pivotal moments in the history of computing, the porting of BASIC to the platform by Microsoft co-founders Bill Gates and Paul Allen. But Tiny BASIC had appeared a year before and suddenly everyone needed “a basic.” You had Commodore BASIC, BBC Basic, Basic for the trash 80, the Apple II, Sinclair and more. Programmers from all over the country had learned BASIC in college on minicomputers and when the PC revolution came, a huge part of that was the explosion of applications, most of which were written in… you got it, BASIC! I typically think of the end of BASIC coming in 1991 when Microsoft bought Visual Basic off of Alan Cooper and object-oriented programming became the standard. But the things I could do with a simple if, then else statement. Or a for to statement or a while or repeat or do loop. Absolute values, exponential functions, cosines, tangents, even super-simple random number generation. And input and output was just INPUT and PRINT or LIST for source. Of course, functional programming was always simpler and more approachable. So there, you now have Kemeny as a direct connection between Einstein and the modern era of computing. Two immigrants that helped change the world. One famous, the other with a slightly more nuanced but probably no less important impact in a lot of ways. Those early BASIC programs opened our eyes. Games, spreadsheets, word processors, accounting, Human Resources, databases. Kemeny would go on to chair the commission investigating Three Mile Island, a partial nuclear meltdown that was a turning point in nuclear proliferation. I wonder what Kemeny thought when he read the following on the Statue of Liberty: Give me your tired, your poor, Your huddled masses yearning to breathe free, The wretched refuse of your teeming shore. Perhaps, like many before and after, he thought that he would breathe free and with that breath, do something great, helping bring the world into the nuclear era and preparing thousands of programmers to write software that would change the world. When you wake up in the morning, you have crusty bits in your eyes and things seem blurry at first. You have to struggle just a bit to get out of bed and see the sunrise. BASIC got us to that point. And for that, we owe them our sincerest thanks. And thank you dear listeners, for your contributions to the world in whatever way they may be. You’re beautiful. And of course thank you for giving me some meaning on this planet by tuning in. We’re so lucky to have you, have a great day!


Visual Basic

     11/8/2019

Visual Basic Welcome to the History of Computing Podcast, where we explore the history of information technology. Because understanding the past prepares us for the innovations of the future! Today we’re going to cover an important but often under appreciated step on the path to ubiquitous computing: Visual Basic. Visual Basic is a programming language for Windows. It’s in most every realistic top 10 of programming languages of all time. It’s certainly split into various functional areas over the last decade or so, but it was how you did a lot of different tasks in Windows automation and programming for two of the most important decades through a foundational period of the PC movement. But where did it come from? Let’s go back to 1975. This was a great year. The Vietnam War ended, Sony gave us Betamax, JVC gave us VHS. Francisco Franco died. I don’t wish ill on many, but if I could go back in time and wish ill on him, I would. NASA launched a joint mission with the Soviet Union. The UK voted to stay the EU. Jimmy Hoffa disappears. And the Altair ships. Altair Basic is like that lego starter set you buy your kid when you think they’re finally old enough to be able to not swallow the smallest pieces. From there, you buy them more and more, until you end up stepping on those smallest pieces and cursing. Much as I used to find myself frequently cursing at Visual Basic. And such is life. Or at least, such is giving life to your software ideas. No matter the language, there’s often plenty of cursing. So let’s call the Altair a proto-PC. It was underpowered, cheap, and with this Microsoft Basic programming language you could, OMG, feed it programs that would blink lights, or create early games. That was 1978. And based largely on the work of John Kemeny and Thomas Kurts, the authors of the original BASIC in 1964, at Dartmouth College. As the PC revolution came, BASIC was popular on the Apple II and original PCs with QuickBASIC coming in 1985, and an IDE, or Integrated Development Environment, for QuickBASIC shipped in 2.0. At the time Maestro was the biggest IDE in use, but they’d been around since Microsoft released the first in 1974. Next, you could compile these programs into DOS executables, or .exe files in 3.0 and 4.0 brought debugging in the IDE. Pretty sweet. You could run the interpreter without ever leaving the IDE! No offense to anyone but Apple was running around the world pitching vendors to build software for the Mac, but had created an almost contentious development environment. And it showed from the number of programs available for the Mac. Microsoft was obviously investing heavily in enabling developers to develop in a number of languages and it showed; Microsoft had 4 times the software titles. Many of which were in BASIC. But the last version of QuickBASIC as it was known by then came in 4.5, in 1988, the year the Red Army withdrew from Afghanistan - probably while watching Who Framed Roger Rabbit on pirated VHS tapes. But by the late 80s, use began to plummet. Much as my daughters joy of the legos began to plummet when she entered tweenhood. It had been a huge growth spurt for BASIC but the era of object oriented programming was emerging. But Microsoft was in an era of hyper growth. Windows 3.0 - and what’s crazy is they were just entering the buying tornado. 1988, the same year as the final release of QuickBASIC, Alan Cooper created a visual programming language he’d been calling Ruby. Now, there would be another Ruby later. This language was visual and Apple had been early to the market on Visual programming, with the Mac - introduced in 1984. Microsoft had responded with Windows 1.0 in 1985. But the development environment just wasn’t very… Visual. Most people at the time used Windows to open a Window of icky text. Microsoft leadership knew they needed something new; they just couldn’t get it done. So they started looking for a more modern option. Cooper showed his Ruby environment to Bill Gates and Gates fell in love. Gates immediately bought the product and it was renamed to Visual Basic. Sometimes you build, sometimes you partner, and sometimes you buy. And so in 1991, Visual Basic was released at Comdex in Atlanta, Georgia and came around for DOS the next year. I can still remember writing a program for DOS. They faked a GUI using ASCII art. Gross. VB 2 came along in 1992, laying the foundations for class modules. VB 3 came in 93 and brought us the JET database engine. Not only could you substantiate an object but you had somewhere to keep it. VB 4 came in 95 because we got a 32-bit option. That adds a year or 6 for every vendor. The innovations that Visual Basic brought to Windows can still be seen today. VBX and DLL are two of the most substantial. A DLL is a “dynamic link library” file that holds code and procedures that Windows programs can then consume. DLL allow multiple programs to use that code, saving on memory and disk space. Shared libraries are the cornerstone of many an object-oriented language. VBX isn’t necessarily used any more as they’ve been replaced with OCXs but they’re similar and the VBX certainly spawned the innovation. These Visual Basic Extensions, or VBX for short, were C or C++ components that were assembled into an application. When you look at applications you can still see DLLs and OCXs. VB 4 was when we switched from VBX to OCX. VB 5 came in 97. This was probably the most prolific, both for software you wanted on your computer and malware. We got those crazy ActiveX controls in VB 5. VB 6 came along in 1998, extending the ability to create web apps. And we sat there for 10 years. Why? The languages really started to split with the explosion of web tools. VBScript was put into Active Server Pages . We got the .NET framework for compiled web pages. We got Visual Basic for Applications, allowing Office to run VB scripts using VBA 7. Over the years the code evolved into what are now known as Unified Windows Platform apps, written in C++ with WinRT or C++ with CX. Those shared libraries are now surfaced in common APIs and sandboxed given that security and privacy have become a much more substantial concern since the Total Wave of the Internet crashed into our lego sets, smashing them back to single blocks. Yah, those blocks hurt when you step on them. So you look for ways not to step on them. And controlling access to API endpoints with entitlements is a pretty good way to walk lightly. Bill Gates awarded Cooper the first “Windows Pioneer Award” for his work on Visual Basic. Cooper continued to consult with companies, with this crazy idea of putting users first. He was an earlier proponent of User Experience and putting users first when building interfaces. In fact, his first book was called “About Face: The Essentials of User Interface Design.” That was published in 1995. He still consults and trains on UX. Honestly, Alan Cooper only needs one line on his resume: “The Father of Visual Basic.” Today Eclipse and Visual Studio are the most used IDEs in the world. And there’s a rich ecosystem of specialized IDEs. The IDE gives code completion, smart code completion, code search, cross platform compiling, debugging, multiple language support, syntax highlighting, version control, visual programming, and so much more. Much of this isn’t available on every platform or for every IDE, but those are the main features I look for - like the first time I cracked open IntelliJ. The IDE is almost optional in functional programming - but In an era of increasingly complex object-oriented programming where classes are defined in hundreds or thousands of itty bitty files, a good, smart, feature-rich IDE is a must. And Visual Studio is one of the best you can use. Given that functional programming is dead, there’s no basic remaining in any of the languages you build modern software in. The explosion of object-orientation created flaws in operating systems, but we’ve matured beyond that and now get to find all the new flaws. Fun right? But it’s important to think, from Alan Kay’s introduction of Smalltalk in 1972, new concepts in programming in programming had been emerging and evolving. The latest incarnation is the API-driven programming methodology. Gone are the days when we accessed memory directly. Gone are the days when the barrier of learning to program was understanding functional and top to bottom syntax. Gone are the days when those Legos were simple little sets. We’ve moved on to building Death Stars out of legos with more than 3500 pieces. Due to increasingly complex apps we’ve had to find new techniques to keep all those pieces together. And as we did we learned that we needed to be much more careful. We’ve learned to write code that is easily tested. And we’ve learned to write code that protects people. Visual Basic was yet another stop towards the evolution to modern design principals. We’ve covered others and we’ll cover more in coming episodes. So until next time, think of the continuing evolution and what might be next. You don’t have to be in front of it, but it does help to have a nice big think on how it can impact projects you’re working on today. So thank you for tuning in to yet another episode of the History of Computing Podcast. We’re so lucky to have you. Have a great day!


Applesoft BASIC, Microsoft and Apple's First Collaboration

     4/19/2020

It's easy to think of Apple and Microsoft as bitter rivals, but that's not always the case. The two companies have a very complicated relationship, and a very long history. This connection goes all the way back to the 1970s and a product called Applesoft BASIC. It would become stock software on nearly every Apple II computer ever sold, it kept Apple competitive in the early home computer market, and it may have saved Microsoft from bankruptcy.

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and stickers: https://www.patreon.com/adventofcomputing

Important dates in this episode:

1997: Bill Gates saves Apple from Bankruptcy
1976: Apple I hits shelves, Integer BASIC soon follows
1977: Apple II Released
1978: AppleSoft BASIC Ships


Bill's Problem with Piracy

     11/25/2019

In this mini-episode we look at a strange event in Microsoft's early history and their first case of piracy. Along the way you will learn about the best advetrizing campaign in history: the MITS MOBILE Computer Caravan!

Like the show? Then why not head over and support me on Patreon. Perks include early access to future episodes, and stickers: https://www.patreon.com/adventofcomputing

Important dates in this episode:

1976: 'Open Letter to Hobbyists' Written by Bill Gates

http://tee.pub/lic/4jnwv7m_ZPw


Keeping Things BASIC

     12/14/2020

BASIC is a strange language. During the early days of home computing it was everywhere you looked, pretty much every microcomputer in the 70s and early 80s ran BASIC. For a time it filled a niche almost perfectly, it was a useable language that anyone could learn. That didn't happen by accident. Today we are looking at the development of BASIC, how two mathematicians started a quest to expose more students to computers, and how their creation got away from them.


Apple: The Apple I computer to the ///

     1/30/2021

I’ve been struggling with how to cover a few different companies, topics, or movements for awhile. The lack of covering their stories thus far has little to do with their impact but just trying to find where to put them in the history of computing. One of the most challenging is Apple. This is because there isn’t just one Apple. Instead there are stages of the company, each with their own place in the history of computers. 

Today we can think of Apple as one of the Big 5 tech companies, which include Amazon, Apple, Google, Facebook, and Microsoft. But there were times in the evolution of the company where things looked bleak. Like maybe they would get gobbled up by another tech company. To oversimplify the development of Apple, we’ll break up their storied ascent into four parts:

  • Apple Computers: This story covers the mid-1970s to mid 1980s and covers Apple rising out of the hobbyist movement and into a gangbuster IPO. The Apple I through III families all centered on one family of chips and took the company into the 90s.
  • The Macintosh: The rise and fall of the Mac covers the introduction of the now-iconic Mac through to the Power Macintosh era. 
  • Mac OS X: This part of the Apple story begins with the return of Steve Jobs to Apple and the acquisition of NeXT, looks at the introduction of the Intel Macs and takes us through to the transition to the Apple M1 CPU.
  • Post PC: Steve Jobs announced the “post PC” era in 2007, and in the coming years the sales of PCs fell for the first time, while tablets, phones, and other devices emerged as the primary means people used devices. 

We’ll start with the early days, which I think of as one of the four key Apple stages of development. And those early days go back far past the days when Apple was hocking the Apple I. They go to high school.

Jobs and Woz

Bill Fernandez and Steve Wozniak built a computer they called “The Cream Soda Computer” in 1970 when Bill was 16 and Woz was 20. It was a crude punch card processing machine built from some parts Woz got from the company he was working for at the time.

Fernandez introduced Steve Wozniak to a friend from middle school because they were both into computers and both had a flare for pranky rebelliousness. That friend was Steve Jobs. 

By 1972, the pranks turned into their first business. Wozniak designed Blue Boxes, initially conceived by Cap’n Crunch John Draper, who got his phreaker name from a whistle in a Cap’n Crunch box that made a tone in 2600 Hz that sent AT&T phones into operator mode. Draper would actually be an Apple employee for a bit. They designed a digital version and sold a few thousand dollars worth. 

Jobs went to Reed College. Wozniak went to Berkely. Both dropped out. 

Woz got a sweet gig at HP designing calculators, where Jobs had worked a summer job in high school.  India to find enlightenment. When Jobs became employee number 40 at Atari, he got Wozniak to help create Breakout. That was the year The Altair 8800 was released and Wozniak went to the first meeting of a little club called the Homebrew Computer Club in 1975 when they got an Altair so the People’s Computer Company could review it. And that was the inspiration. Having already built one computer with Fernandez, Woz designed schematics for another. Going back to the Homebrew meetings to talk through ideas and nerd out, he got it built and proud of his creation, returned to Homebrew with Jobs to give out copies of the schematics for everyone to play with. This was the age of hackers and hobbyists. But that was about to change ever so slightly. 

The Apple I 

Jobs had this idea. What if they sold the boards. They came up with a plan. Jobs sold his VW Microbus and Wozniak sold his HP-65 calculator and they got to work. Simple math. They could sell 50 boards for $40 bucks each and make some cash like they’d done with the blue boxes. But you know, a lot of people didn’t know what to do with the board. Sure, you just needed a keyboard and a television, but that still seemed a bit much. 

Then a little bigger plan - what if they sold 50 full computers. They went to the Byte Shop and talked them into buying 50 for $500. They dropped $20,000 on parts and netted a $5,000 return. They’d go on to sell about 200 of the Apple Is between 1976 and 1977.

It came with a MOS 6502 chip running at a whopping 1 MHz and with 4KB of memory, which could go to 8. They provided Apple BASIC, as most vendors did at the time. That MOS chip was critical. Before it, many used an Intel or the Motorola 6800, which went for $175. But the MOS 6502 was just $25. It was an 8-bit microprocessor designed by a team that Chuck Peddle ran after leaving the 6800 team at Motorola. Armed with that chip at that price, and with Wozniak’s understanding of what it needed to do and how it interfaced with other chips to access memory and peripherals, the two could do something new. 

They started selling the Apple 1 and to quote an ad “the Apple comes fully assembled, tested & burned-in and has a complete power supply on-board, initial set-up is essentially “hassle free” and you can be running in minutes.” This really tells you something about the computing world at the time. There were thousands of hobbyists and many had been selling devices. But this thing had on-board RAM and you could just add a keyboard and video and not have to read LEDs to get output. The marketing descriptions were pretty technical by modern Apple standards, telling us something of the users. It sold for $666.66.

They got help from Patty Jobs building logic boards. Jobs’ friend from college Daniel Kottke joined for the summer, as did Fernandez and Chris Espinosa - now Apple’s longest-tenured employee. It was a scrappy garage kind of company. The best kind. 

They made the Apple I until a few months after they released the successor. But the problem with the Apple I was that there was only one person who could actually support it when customers called: Wozniak. And he was slammed, busy designing the next computer and all the components needed to take it to the mass market, like monitors, disk drives, etc. So they offered a discount for anyone returning the Apple I and destroyed most returned. Those Apple I computers have now been auctioned for hundreds of thousands of dollars all the way up to $1.75 million. 

The Apple II

They knew they were on to something. But a lot of people were building computers. They needed capital if they were going to bring in a team and make a go at things. But Steve Jobs wasn’t exactly the type of guy venture capitalists liked to fund at the time.

Mike Markkula was a product-marketing manager at chip makers Fairchild and Intel who retired early after making a small fortune on stock options. That is, until he got a visit from Steve Jobs. He brought money but more importantly the kind of assistance only a veteran of a successful corporation who’d ride that wave could bring. He brought in Michael "Scotty" Scott, employee #4, to be the first CEO and they got to work on mapping out an early business plan. If you notice the overlapping employee numbers, Scotty might have had something to do with that…

As you may notice by Wozniak selling his calculator, at the time computers weren’t that far removed from calculators. So Jobs brought in a calculator designer named Jerry Manock to design a plastic injection molded case, or shell, for the Apple II. They used the same chip and a similar enough motherboard design. They stuck with the default 4KB of memory and provided jumpers to make it easier to go up to 48. They added a cassette interface for IO. They had a toggle circuit that could trigger the built-in speaker. And they would include two game paddles. This is similar to bundles provided with the Commodore and other vendors of the day. And of course it still worked with a standard TV - but now that TVs were mostly color, so was the video coming out of the Apple II. And all of this came at a starting price of $1,298.

The computer initially shipped with a version of BASIC written by Wozniak but Apple later licensed the Microsoft 6502 BASIC to ship what they called Applesoft BASIC, short for Apple and Micorosft. Here, they turned to Randy Wiggington who was Apple’s employee #6 and had gotten rides to the Homebrew Computer Club from Wozniak as a teenager (since he lived down the street). He and others added features onto Microsoft BASIC to free Wozniak to work on other projects. Deciding they needed a disk operating system, or DOS. Here, rather than license the industry standard CP/M at the time, Wigginton worked with Shepardson, who did various projects for CP/M and Atari.  

The motherboard on the Apple II remains an elegant design. There were certain innovations that Wozniak made, like cutting down the number of DRAM chips by sharing resources between other components. The design was so elegant that Bill Fernandez had to join them as employee number four, in order to help take the board and create schematics to have it silkscreened.  The machines were powerful.

All that needed juice. Jobs asked his former boss Al Alcorn for someone to help out with that. Rod Holt, employee number 5, was brought in to design the power supply. By implementing a switching power supply, as Digital Equipment had done in the PDP-11, rather than a transformer-based power supply, the Apple II ended up being far lighter than many other machines. 

The Apple II was released in 1977 at the West Coast Computer Fair. It, along with the TRS-80 and the Commodore PET would become the 1977 Trinity, which isn’t surprising. Remember Peddle who ran the 6502 design team - he designed the PET. And Steve Leininger was also a member of the Homebrew Computer Club who happened to work at National Semiconductor when Radio Shack/Tandy started looking for someone to build them a computer. 

The machine was stamped with an Apple logo. Jobs hired Rob Janoff, a local graphic designer, to create the logo. This was a picture of an Apple made out of a rainbow, showing that the Apple II had color graphics. This rainbow Apple stuck and became the logo for Apple Computers until 1998, after Steve Jobs returned to Apple, when the Apple went all-black, but the silhouette is now iconic, serving Apple for 45 years and counting.

The computers were an instant success and sold quickly. But others were doing well in the market. Some incumbents and some new. Red oceans mean we have to improve our effectiveness. So this is where Apple had to grow up to become a company. Markkula made a plan to get Apple to $500 million in sales in 10 years on the backs of his $92,000 investment and another $600,000 in venture funding. 

They did $2.7 million dollars in sales in 1977. This idea of selling a pre-assembled computer to the general public was clearly resonating. Parents could use it to help teach their kids. Schools could use it for the same. And when we were done with all that, we could play games on it. Write code in BASIC. Or use it for business. Make some documents in Word Star, spreadsheets in VisiCalc, or use one of the thousands of titles available for the Mac. Sales grew 150x until 1980.

Given that many thought cassettes were for home machines and floppies were for professional machines, it was time to move away from tape. Markkela realized this and had Wozniak design a floppy disk for the Apple II, which went on to be known as the Drive II. Wozniak had experience with disk controllers and studied the latest available. Wozniak again managed to come up with a value engineered design that allowed Apple to produce a good drive for less than any other major vendor at the time. Wozniak would actually later go on to say that it was one of his best designs (and many contemporaries agreed).

Markkula filled gaps as well as anyone. He even wrote free software programs under the name of Johnny Appleseed, a name also used for years in product documentation. He was a classic hacker type of entrepreneur on their behalf, sitting in the guerrilla marketing chair some days or acting as president of the company others, and mentor for Jobs in other days.  

From Hobbyists to Capitalists

Here’s the thing - I’ve always been a huge fan of Apple. Even in their darkest days, which we’ll get to in later episodes, they represented an ideal. But going back to the Apple 1, they were nothing special. Even the Apple II. Osborne, Commodore, Vector Graphics, Atari, and hundreds of other companies were springing up, inspired first by that Altair and then by the rapid drop in the prices of chips. 

The impact of the 1 megahertz barrier and cost of those MOS 6502 chips was profound. The MOS 6502 chip would be used in the Apple II, the Atari 2600, the Nintendo NES, the BBY Micro. And along with the Zylog Z80 and Intel 8080 would spark a revolution in personal computers. Many of those companies would disappear in what we’d think of as a personal computer bubble if there was more money in it. But those that survived, took things to an order of magnitude higher. Instead of making millions they were making hundreds of millions. Many would even go to war in a race to the bottom of prices. And this is where Apple started to differentiate themselves from the rest. 

For starters, due to how anemic the default Altair was, most of the hobbyist computers were all about expansion. You can see it on the Apple I schematics and you can see it in the minimum of 7 expansion slots in the Apple II lineup of computers. Well, all of them except the IIc, marketed as a more portable type of device, with a handle and an RCA connection to a television for a monitor. 

The media seemed to adore them. In an era of JR Ewing of Dallas, Steve Jobs was just the personality to emerge and still somewhat differentiate the new wave of computer enthusiasts. Coming at the tail end of an era of social and political strife, many saw something of themselves in Jobs. He looked the counter-culture part. He had the hair, but this drive. The early 80s were going to be all about the yuppies though - and Jobs was putting on a suit. Many identified with that as well.

Fueled by the 150x sales performance shooting them up to $117M in sales, Apple filed for an IPO, going public in 1980, creating hundreds of millionaires, including at least 40 of their own employees. It was the biggest IPO since Ford in 1956, the same year Steve Jobs was born. The stock was filed at $14 and shot up to $29 on the first day alone, leaving Apple sitting pretty on a $1.778 valuation. 

Scotty, who brought the champagne, made nearly a $100M profit. One of the Venture Capitalists, Arthur Rock, made over $21M on a $57,600 investment. Rock had been the one to convince the Shockley Semiconductor team to found Fairchild, a key turning point in putting silicon into the name of Silicon Valley. When Noyce and Moore left there to found Intel, he was involved. And he would stay in touch with Markkula, who was so enthusiastic about Apple that Rock invested and began a stint on the board of directors at Apple in 1978, often portrayed as the villain in the story of Steve Jobs. But let’s think about something for a moment. Rock was a backer of Scientific Data Systems, purchased by Xerox in 1969, becoming the Xerox 500. Certainly not Xerox PARC and in fact, the anti-PARC, but certainly helping to connect Jobs to Xerox later as Rock served on the board of Xerox.

The IPO Hangover

Money is great to have but also causes problems. Teams get sidetracked trying to figure out what to do with their hauls. Like Rod Holt’s $67M haul that day. It’s a distraction in a time when executional excellence is critical. We have to bring in more people fast, which created a scenario Mike Scott referred to as a “bozo explosion.” Suddenly more people actually makes us less effective. 

Growing teams all want a seat at a limited table. Innovation falls off as we rush to keep up with the orders and needs of existing customers. Bugs, bigger code bases to maintain, issues with people doing crazy things. 

Taking our eyes off the ball and normalizing the growth can be hard. By 1981, Scotty was out after leading some substantial layoffs.  Apple stock was down. A big IPO also creates investments in competitors. Some of those would go on a race to the bottom in price. 

Apple didn’t compete on price. Instead, they started to plan the next revolution, a key piece of Steve Jobs emerging as a household name. They would learn what the research and computer science communities had been doing - and bring a graphical interface and mouse to the world with Lisa and a smaller project brought forward at the time by Jef Raskin that Jobs tried to kill - but one that Markkula not only approved, but kept Jobs from killing, the Macintosh. 

Fernandez, Holt, Wigginton, and even Wozniak just drifted away or got lost in the hyper-growth of the company, as is often the case. Some came back. Some didn’t. Many of us go through the same in rapidly growing companies. 

Next (but not yet NeXT)

But a new era of hackers was on the way. And a new movement as counter to the big computer culture as Jobs. But first, they needed to take a trip to Xerox. In the meantime, the Apple III was an improvement but proved that the Apple computer line had run its course. They released it in 1980 and recalled the first 14,000 machines and never peaked 75,000 machines sold, killing off the line in 1984. A special year. 


(OldComputerPods) ©Sean Haas, 2020