'vintagecomputers' Episodes

From Moveable Type To The Keyboard

     2/18/2021

QWERTY. It’s a funny word. Or not a word. But also not an acronym per se. Those are the  top six letters in a modern keyboard. Why? Because the frequency they’re used allows for hammers on a traditional typewriter to travel to and fro and the effort allows us to be more efficient with our time while typing. The concept of the keyboard goes back almost as far back as moveable type - but it took hundreds of years to standardize where we are today. 

Johannes Gutenberg is credited for developing the printing press in the 1450s. Printing using wooden blocks was brought to the Western world from China, which led him to replace the wood or clay characters with metal, thus giving us what we now think of as Moveable Type. This meant we were now arranging blocks of characters to print words onto paper. From there it was only a matter of time that we would realize that pressing a key could stamp a character onto paper as we went rather than developing a full page and then pressing ink to paper.

The first to get credit for pressing letters onto paper using a machine was Venetian Francesco Rampazzetto in 1575. But as with many innovations, this one needed to bounce around in the heads of inventors until the appropriate level of miniaturization and precision was ready. Henry Mill filed an English patent in 1714 for a machine that could type (or impress) letters progressively. By then, printed books were ubiquitous but we weren’t generating pages of printed text on the fly just yet. 

Others would develop similar devices but from 1801 to 1810, Pellegrino Turri in Italy developed carbon paper. Here, he coated one side of paper with carbon and the other side with wax. Why did he invent that, other than to give us an excuse to say carbon copy later (and thus the cc in an email)? 

Either he or Agostino Fantoni da Fivizzano invented a mechanical machine for pressing characters to paper for Countess Carolina Fantoni da Fivizzano, a blind friend of his. She would go on to send him letters written on the device, some of which exist to this day. More inventors tinkered with the idea of mechanical writing devices, often working in isolation from one another.

One was a surveyor, William Austin Burt. He found the handwritten documents of his field laborious and so gave us the typographer in 1829. Each letter was moved to where needed to print manually so it wasn’t all that much faster than the handwritten document, but the name would be hyphenated later to form type-writer. And with precision increasing and a lot of invention going on at the time there were other devices. But his patent was signed by Andrew Jackson. 

James Pratt introduced his Pterotype in an article in the Scientific American in 1867. It was a device that more closely resembles the keyboard layout we know today, with 4 rows of keys and a split in the middle for hands. Others saw the article and continued their own innovative additions. 

Frank Hall had worked on the telegraph before the Civil War and used his knowledge there to develop a Braille writer, which functioned similarly to a keyboard. He would move to Wisconsin, where he came in contact with another team developing a keyboard.

Christopher Latham Sholes saw the article in the Scientific American and along with Carlos Glidden and Samuel Soule out of Milwaukee developed the QWERTY keyboard we know of as the standard keyboard layout today from 1867 to 1868. Around the same time, Danish pastor Rasmus Malling-Hansen introduced the writing ball in 1870. It could also type letters onto paper but with a much more complicated keyboard layout. It was actually the first typewriter to go into mass production - but at this point new inventions were starting to follow the QWERTY layout. Because asdfjkl;. Both though were looking to increase typing speed with Malling-Mansen’s layout putting constanents on the right side and vowels on the left - but Sholes and Glidden mixed keys up to help reduce the strain on hardware as it recoiled, thus splitting common characters in words between the sides. 

James Densmore encountered the Sholes work and jumped in to help. They had it relentlessly tested and iterated on the design, getting more and more productivity gains and making the device more and more hardy. When the others left the project, it was Densmore and Sholes carrying on. But Sholes was also a politician and editor of a newspaper, so had a lot going on. He sold his share of the patent for their layout for $12,000 and Densmore decided to go with royalties instead. 

By the 1880s, the invention had been floating around long enough and given a standardized keyboard it was finally ready to be mass produced. This began with the Sholes & Glidden Type Writer introduced in America in 1874. That was followed by the Caligraph. But it was Remington that would take the Sholes patent and create the Remington Typewriter, removing the hyphen from the word typewriter and going mainstream - netting Densmore a million and a half bucks in 1800s money for his royalties. And if you’ve seen anything typed on it, you’ll note that it supported one font: the monospaced sans serif Grotesque style.

Characters had always been upper case. Remington added a shift key to give us the ability to do both upper and lower case in 1878 with the Remington Model 2. This was also where we got the ampersand, parenthesis,  percent symbol, and question mark as shift characters for numbers. Remington also added tab and margins in 1897. Mark Twain was the first author to turn a manuscript in from a typewriter using what else but the Remington Typewriter. By then, we were experimenting with the sizes and spaces between characters, or kerning, to make typed content easier to read. Some companies moved to slab serif or Pica fonts and typefaces. You could really tell a lot about a company by that Olivetti with it’s modern, almost anti-Latin fonts. 

The Remington Typewriter Company would later merge with the Rand Kardex company to form Remington Rand, making typewriters, guns, and then in 1950, acquiring the Eckert-Mauchly Computer Corporation, who made ENIAC - arguably the first all-digital computer. Rand also acquired Engineering Research Associates (or ERA) and introduced the Univac. Electronics maker Sperry acquired them in 1955, and then merged with Burroughs to form Unisys in 1988, still a thriving company. But what’s important is that they knew typewriters. And keyboards.

But electronics had been improving in the same era that Remington took their typewriters mainstream, and before. Samuel Morse developed the recording telegraph in 1835 and David Hughes added the printed telegraph. Emile Baudot gave us a 5 bit code in the 1870s that enhanced that but those were still using keys similar to what you find on a piano. The typewriter hadn’t yet merged with digital communications just yet. Thomas Edison patented the electric typewriter in 1872 but didn’t produce a working model. And this was a great time of innovation. For example, Alexander Graham Bell was hard at work on patenting the telephone at the time. 

James Smathers then gave us the first electronic typewriter in 1920 and by the 1930s improved Baudot, or baud was combined with a QUERTY keyboard by Siemens and others to give us typing over the wire. The Teletype Corporation was founded in 1906 and would go from tape punch and readers to producing the teletypes that allowed users to dial into mainframes in the 1970s timesharing networks. But we’re getting ahead of ourselves. How did we eventually end up plugging a keyboard into a computer?

Herman Hollerith, the mind behind the original IBM punch cards for tabulating machines before his company got merged with others to form IBM, brought us text keypunches, which were later used to input data into early computers. The Binac computer used a similar representation with 8 keys and an electromechanical control was added to input data into the computer like a punch card might - for this think of a modern 10-key pad. Given that we had electronic typewriters for a couple of decades it was only a matter of time before a full keyboard worth of text was needed on a computer. That came in 1954 with the pioneering work done MIT. Here, Douglas Ross wanted to hookup a Flexowriter electric typewriter to a computer, which would be done the next year as yet another of the huge innovations coming out of the Whirlwind project at MIT. With the addition of core memory to computing that was the first time a real keyboard (and being able to write characters into a computer) was really useful. After nearly 400 years since the first attempts to build a moveable type machine and then and just shy of 100 years since the layout had been codified, the computer keyboard was born. 

The PLATO team in late 60s University of Illinois Champaign Urbana were one of many research teams that sought to develop cheaper input output mechanisms for their computer Illiac and prior to moving to standard keyboards they built custom devices with fewer keys to help students select multiple choice answers. But eventually they used teletype-esque systems. 

Those early keyboards were mechanical. They still made a heavy clanky sound when the keys were pressed. Not as much as when using a big mechanical typewriter, but not like the keyboards we use today. These used keys with springs inside them. Springs would be replaced with pressure pads in some machines, including the Sinclair ZX80 and ZX81. And the Timex Sinclair 1000. Given that there were less moving parts, they were cheap to make. They used conductive traces with a gate between two membranes. When a key was pressed electricity flowed through what amounted to a flip-flop. When the key was released the electricity stopped flowing. I never liked them because they just didn’t have that feel. In fact, they’re still used in devices like microwaves to provide for buttons under led lights that you can press. 

By the late 1970s, keyboards were becoming more and more common. The next advancement was in Chiclet keyboards, common on the TRS-80 and the IBM PCjr. These were were like membrane keyboards but used moulded rubber. Scissor switch keyboards became the standard for laptops - these involve a couple of pieces of plastic under each key, arranged like a scissor. And more and more keyboards were produced. 

With an explosion in the amount of time we spent on computers, we eventually got about as many designs of ergonomic keyboards as you can think of. Here, doctors or engineers or just random people would attempt to raise or lower hands or move hands apart or depress various keys or raise them. But as we moved from desktops to laptops or typing directly on screens as we do with tablets and phones, those sell less and less.

I wonder what Sholes would say if you showed him and the inventors he worked with what the QWERTY keyboard looks like on an iPhone today? I wonder how many people know that at least two of the steps in the story of the keyboard had to do with helping the blind communicate through the written word? I wonder how many know about the work Alexander Graham Bell did with the deaf and the impact that had on his understanding of the vibrations of sound and the emergence of phonautograph to record sound and how that would become acoustic telegraphy and then the telephone, which could later stream baud? Well, we’re out of time for today so that story will have to get tabled for a future episode.

In the meantime, look around for places where there’s no standard. Just like the keyboard layout took different inventors and iterations to find the right amount of productivity, any place where there’s not yet a standard just needs that same level of deep thinking and sometimes generations to get it perfected. But we still use the QWERTY layout today and so sometimes once we find the right mix, we’ve set in motion an innovative that can become a true game changer. And if it’s not ready, at least we’ve contributed to the evolutions that revolutionize the world. Even if we don’t use those inventions. Bell famously never had a phone installed in his office. Because distractions. Luckily I disabled notifications on my phone before recording this or it would never get out… 


(OldComputerPods) ©Sean Haas, 2020